Load unbalancing problem is a multi-variant, multi-constraint problem that degrades performance and efficiency of computing resources. Load balancing techniques cater the solution for load unbalancing situation for two undesirable facets-overloading and under-loading. In contempt of the importance of load balancing techniques to the best of our knowledge, there is no comprehensive, extensive, systematic and hierarchical classification about the existing load balancing techniques. Further, the factors that cause load unbalancing problem are neither studied nor considered in the literature. This paper presents a detailed encyclopedic review about the load balancing techniques. The advantages and limitations of existing methods are highlighted with crucial challenges being addressed so as to develop efficient load balancing algorithms in future. The paper also suggests new insights towards load balancing in cloud computing.
Among the different QoS metrics and parameters considered in cloud computing are the waiting time of cloud tasks, execution time of tasks in VM's, and the utilization rate of servers. The proposed model was developed to overcome some of the pitfalls in the existing systems among which are sub-optimal markdown in the queue length, waiting time, response time, and server utilization rate. The proposed model contemplates on the enhancement of these metrics using a Hybrid Multiple Parallel Queuing approach with a joint implementation of M/M/1: ∞ and M/M/s: N/FCFS to achieve the desired objectives. A neoteric set of mathematical equations have been formulated to validate the efficiency and performance of the hybrid queuing model. The results have been validated with reference to the workload traces of Bit Brains infrastructure provider. The results obtained indicate the significant reduction in the queue length by 60.93 percent, waiting time in the queue by 73.85 percent, and total response time by 97.51%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.