Infectious disease management has become an increasing challenge in recent years. According to the Centers for Disease Control and Prevention and the World Health Organization, microbial infections are a top concern. Pathogenic microorganisms are of main concern in hospitals and other healthcare locations, as they affect the optimal functioning of medical devices, surgical devices, bone cements, etc. Combatting microbial infections has become a serious health concern and major challenging issue due to antimicrobial resistance or multidrug resistance and has become an important research field in science and medicine. Antibiotic resistance is a phenomenon where microorganisms acquire or innately possess resistance to antimicrobial agents. New materials offer a promising antimicrobial strategy as they can kill or inhibit microbial growth on their surface or within the surrounding environment with superior efficacy, low toxicity and minimized environmental problems. The present chapter focuses on classification of antimicrobial materials, surface modification and design requirements, their mode of action, antimicrobial evaluation tests and clinical status.
Irresponsiveness of triple negative breast cancer (TNBC) toward conventional therapies has drawn attention toward siRNA therapeutics. In gene delivery, dendrimers are gaining significant attention due to their characteristic features and polo‐like kinase (PLK1) is reported as a potential target for TNBC. In this work, phosphorus and polyamidoamine dendrimer (generation 3 and 4 of each type) are explored to address delivery challenges of PLK1 siRNA (siPLK1). Dendriplexes were formed and complexation was found at 3:1 N/P ratio for all dendrimers by gel electrophoresis. Complexation was also supported by zeta potential, circular dichroism and intercalation assay. Dendriplexes were found to be stable in presence of ribonuclease and serum. Dendriplexes resulted in enhanced cell uptake of siPLK1 compared to siPLK1 solution in MDA‐MB‐231 and MCF‐7 cells. Dendriplexes caused increased cell arrest in sub‐G1 phase compared to solution. These observations suggested phosphorus and polyamidoamine dendrimers as potential carriers for siPLK1 delivery to treat TNBC.
Jevtana® is a micellar cabazitaxel (CBZ) solution that was approved for prostate cancer in 2010, and recently, this drug has been reported for breast cancer. The purpose of this study is to evaluate the mediated delivery of CBZ via liposomes and nanoparticles (NPs) for the treatment of breast cancer and compare these with a micellar formulation that is currently in clinical use. CBZ-loaded nanocarriers were prepared with particle sizes between 70–110 nm, and with the sustained in vitro release of CBZ for more than 28 days. Cytotoxicity studies on MCF-7 and MDA-MB-231 cells demonstrated the toxic potential of these nanocarriers. Cellular internalization revealed that NPs and liposomes have better permeability than micelles. Cell cycle analysis and apoptosis studies on MCF-7 and MDA-MB-231 cells confirmed G2/M phase arrest as well as cell death due to apoptosis and necrosis, where formulations were found to be effective compared to a micellar CBZ solution. Results from pharmacokinetic studies revealed that there is an increased circulation half-life and mean residence time for CBZ liposomes and NPs in comparison with a micellar CBZ solution. CBZ liposomes and NPs showed a reduction in hemolysis and neutropenia in comparison with a micellar CBZ solution in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.