Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential—the number of expressed genes per cell—and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.
Single-cell RNA-sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation without prior knowledge has remained challenging. Here we describe a simple yet robust determinant of developmental potential-the number of detectably expressed genes per celland leverage this measure of transcriptional diversity to develop a new framework for predicting ordered differentiation states from scRNA-seq data. When evaluated on ~150,000 single-cell transcriptomes spanning 53 lineages and five species, our approach, called CytoTRACE, outperformed previous methods and ~19,000 molecular signatures for resolving experimentallyconfirmed developmental trajectories. In addition, it enabled unbiased identification of tissueresident stem cells, including cells with long-term regenerative potential. When used to analyze human breast tumors, we discovered candidate genes associated with less-differentiated luminal progenitor cells and validated GULP1 as a novel gene involved in tumorigenesis. Our study establishes a key RNA-based correlate of developmental potential and provides a new platform for robust delineation of cellular hierarchies (https://cytotrace.stanford.edu).
The Tabula Muris ConsortiumWe have created a compendium of single cell transcriptome data from the model organism Mus musculus comprising more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, revealing gene expression in poorly characterized cell populations and allowing for direct and controlled comparison of gene expression in cell types shared between tissues, such as T-lymphocytes and endothelial cells from distinct anatomical locations. Two distinct technical approaches were used for most tissues: one approach, microfluidic droplet-based 3’-end counting, enabled the survey of thousands of cells at relatively low coverage, while the other, FACS-based full length transcript analysis, enabled characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.