Phonocardiogram (PCG) signal represents recording of sounds and murmurs resulting from heart auscultation. Analysis of these PCG signals is critical in diagnosis of different heart diseases. Over the years, a variety of methods have been proposed for automatic analysis of PCG signals in time, frequency, and time-frequency domains. This paper presents a comprehensive survey of different methods proposed for automatic analysis of PCG signals with the objective to evaluate the current state-of-the-art and to determine the potential domains of effective analysis. An important aspect of our contribution is that the review is carried out as a function of domains of analysis rather than simply discussing different methods. Our method further splits analysis into pre-processing, localization, and classification, and details are presented in terms of techniques and classifiers used during these phases. Finally, results are summarized for normal heart beat, noisy heart beat, and different pathologies using metrices like accuracy and detection rate. In addition to time and frequency domain, time-frequency based methods including wavelet, empirical mode decomposition (EMD) and time-frequency representation (TFR) are selected for detailed analysis. The review concludes that the time-frequency representations like EMD and wavelets represent areas of exploration in future along with perspective of using different time-frequency techniques together.
Non-invasive photoplethysmography (PPG) technology was developed to track heart rate during motion. Automated analysis of PPG has made it useful in both clinical and non-clinical applications. However, PPG-based heart rate tracking is a challenging problem due to motion artifacts (MAs) which are main contributors towards signal degradation as they mask the location of heart rate peak in the spectra. A practical analysis system must have good performance in MA removal as well as in tracking. In this article, we have presented state-of-art techniques in both areas of the automated analysis, i.e., MA removal and heart rate tracking, and have concluded that adaptive filtering and multi-resolution decomposition techniques are better for MA removal and machine learning-based approaches are future perspective of heart rate tracking. Hence, future systems will be composed of machine learning-based trackers fed with either empirically decomposed signal or from output of adaptive filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.