Ginger (Zingiber officinale) belonging to the family Zingiberaceae is a perennial herb. It is widely distributed in tropical Asia. In India, it is cultivated mainly in Kerala, Andhra Pradesh, Uttar Pradesh, West Bengal and Maharashtra. It is one of the most common spices, which is in use since centuries for its versatile medicinal actions like antiemetic, stomachic, expectorant, anti-inflammatory, aphrodisiac etc in traditional system of medicine (Unani, Ayurveda, and Chinese medicine). It is useful for the treatment of various gastrointestinal, pulmonary, cardiovascular and sexual disorders. The phytochemical study of ginger showed the presence of many volatile oils and oleo-resins like gingerol, zingerone, zingiberol etc. Numerous experimental and clinical trials have proven ginger for its range of therapeutic activities such as antibacterial, antidiabetic, antiemetic, hypolipidaemic, hepatoprotective etc properties. The present article aims to explore traditional Unani and pharmacological activities of this herb reported till date.
Emerging evidence suggests that an individual is a complex mosaic of genetically divergent cells. Post-zygotic genomes of the same individual can differ from one another in the form of single nucleotide variations, copy number variations, insertions, deletions, inversions, translocations, other structural and chromosomal variations and footprints of transposable elements. High-throughput sequencing has led to increasing detection of mosaicism in healthy individuals which is related to ageing, neuro-degenerative disorders, diabetes mellitus, cardiovascular diseases and cancer. These age-related disorders are also known to be associated with significant increase in DNA damage and inflammation. Herein, we discuss a newly described phenomenon wherein the genome is under constant assault by illegitimate integration of cell-free chromatin (cfCh) particles that are released from the billions of cells that die in the body every day. We propose that such repeated genomic integration of cfCh followed by dsDNA breaks and repair by non-homologous-end-joining as well as physical damage to chromosomes occurring throughout life may lead to somatic/chromosomal mosaicism which would increase with age. We also discuss the recent finding that genomic integration of cfCh and the accompanying DNA damage is associated with marked activation of inflammatory cytokines. Thus, the triple pathologies of somatic mosaicism, DNA/chromosomal damage and inflammation brought about by a common mechanism of genomic integration of cfCh may help to provide an unifying model for the understanding of aetiologies of the inter-related conditions of ageing, degenerative disorders and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.