To achieve high quality images from the sky by extending an existing interferometric array, in this work, the Geometrical Method (GM), Genetic Algorithm (GA), and Division Algorithm (DA) are compared. These methods are each applied independently to an interferometer array starting from the same initial conditions. Using the GM method, the spiral configuration is suggested as an optimum arrangement that provides the desired u-v coverage with low side lobe levels (SLLs). Using the GA method, as the number of generations is increased, the unsampled cells are reduced, enhancing the imaging quality. As such, the algorithm improves the overlapped samples as it works with a greater number of generations. Moreover, the GA is able to suppress the SLL. Finally, the DA is applied to such an array. Results show that the DA is able to process the sampled data with less overlapping of the data in the snapshot observations, in comparison to the other discussed configurations in this paper; effectively the DA reduces the overlapped samples, such that it is more efficient than the GA. The configuration of antennas that arrives by applying the DA method can achieve a certain image quality with less overlapping, as compared to the configuration arriving by applying the GA method. The calculated SLLs for the DA configuration are used to demonstrate that the efficiency of the DA is potentially better than that of the GA. Moreover, the GA and DA algorithms discussed in this study are applied to an array of 10 antennas with coordinates that represent the antennas deployed in Malaysia.Results show that the DA can reduce the overlapping of the samples more efficiently than the GA for a 6-hour tracking observation and in terms of unsampled cells the DA has the same efficiency of the GA. How to cite this paper:
The Square Kilometre Array (SKA) ushers in the new generation of large radio telescopes that will work at wavelengths between meters and centimeters. In order to competitively design interferometric antenna arrays such as SKA, it is crucial to focus on the optimization of system performance. In this paper, we contribute to the solution by introducing a new optimization algorithm called Division Algorithm (DA). This algorithm finds the optimal positions of antennas to simultaneously maximize u-v coverage and decrease sidelobe level (SLL). The DA is able to optimize the configuration of the interferometric array in both snapshot and Earth rotation synthesis observations. To demonstrate its efficiency, the DA is applied to configure an optimum 30-element array for the Giant Metrewave Radio Telescope. The proposed algorithm is able to improve the overlapped samples parameter by about 4% and the unsampled cells parameter by about 12%, at snapshot observation, compared to the Genetic Algorithm (GA). DA is able to improve these two parameters for a 6-hr tracking observation as well. Finally, the proposed algorithm is compared with the GA for different source declination. Results show that the DA is able to decrease the SLL better than the GA.
Estimates of abundance and their changes through time are key elements of marine mammal conservation and management. Absolute marine mammal abundance in a region of the open ocean is often difficult to attain. However, methods of estimating their abundance based on passive acoustic recordings are becoming increasingly employed. This study shows that passive acoustic monitoring of North Atlantic minke whales with a single hydrophone provides sufficient information to estimate relative population abundance. An automated detector was developed for minke whale pulse trains and an approach for converting its output into a relative abundance index is proposed by accounting for detectability as well as false positives and negatives. To demonstrate this technique, a 2 y dataset from the seven sites of the Atlantic Deepwater Ecosystem Observatory Network project on the U.S. east coast was analyzed. Resulting relative abundance indices confirm pulse train-calling minke whale presence in the deep waters of the outer continental shelf. The minkes are present December through April annually with the highest abundance near the site offshore of Savannah, Georgia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.