The leucine transporter (LeuT) from Aquifex aeolicus is a bacterial homolog of neurotransmitter:sodium symporters (NSS) that catalyze reuptake of neurotransmitters at the synapse. Crystal structures of wild type (WT) and mutants of LeuT have been interpreted as conformational states in the coupled transport cycle. However, the mechanistic identities inferred from these structures have not been validated and the ligand-dependent conformational equilibrium of LeuT has not been defined. Here, we utilized distance measurements between spin label pairs to elucidate Na+- and leucine-dependent conformational changes on the intracellular and extracellular sides of the transporter. The results identify structural motifs that underlie the isomerization of LeuT between outward-facing, inward-facing and occluded states. The novel conformational changes reported here present a dynamic picture of the alternating access mechanism of LeuT and NSS that is different to the inferences reached from currently available crystal structures.
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate (MTS) spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins.
Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuTfold has been captured in outward-facing, occluded, and inwardfacing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na + -coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion-and substrate-dependent conformational equilibria. In contrast to the Na + /leucine transporter LeuT, our results suggest that Na + binding at the conserved second Na + binding site does not change the energetics of the inward-and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.EPR | DEER | Na + -coupled symport | conformational dynamics | transport mechanism
Summary CorA, the major Mg2+ uptake system in prokaryotes, is gated by intracellular Mg2+ (KD ~1–2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg2+-bound and Mg2+-free conditions, but EPR spectroscopic studies reveal large Mg2+-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg2+-bound “closed” conformation and in two “open” Mg2+-free states at resolutions of 3.8 A, 7.1 A and 7.1 A, respectively. In the absence of bound Mg2+, four of the five subunits are displaced to variable extents (~10 to ~25 A) by hinge-like motions at the stalk helix as large as ~35°. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg2+, open, asymmetric conformational states, is thus the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.
DEER (Double Electron Electron Resonance) is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of distance histograms between pairs of nitroxide spin-labels linked to a protein in a native-like solution environment. However, exploiting the huge amount of information provided by ESR/DEER histograms to refine structural models is extremely challenging. In this study, a restrained ensemble (RE) molecular dynamics (MD) simulation methodology is developed to address this issue. In RE simulation, the spin-spin distance distribution histograms calculated from a multiple-copy MD simulation are enforced, via a global ensemble-based energy restraint, to match those obtained from ESR/DEER experiments. The RE simulation is applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in T4 lysozyme (T4L). The rotamer population distribution along the five dihedral angles connecting the nitroxide ring to the protein backbone is determined and shown to be consistent with available information from X-ray crystallography. For the purpose of structural refinement, the concept of a simplified nitroxide dummy spin-label is designed and parameterized on the basis of these all-atom RE simulations with explicit solvent. It is demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures, while simple harmonic distance restraints are unsuccessful. This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.