(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Breast cancer-model expression
Comparison of mammary tumor gene-expression profiles from thirteen murine models using microarrays and with that of human breast tumors showed that many of the defining characteristics of human subtypes were conserved among mouse models.
Abstract Background: Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human breast tumors.
The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching, or simple in silico ligand docking. We now describe a novel rapid computational proteochemometric method called "train, match, fit, streamline" (TMFS) to map new drug−target interaction space and predict new uses. The TMFS method combines shape, topology, and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug−target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3671 FDA approved drugs across 2335 human protein crystal structures. The TMFS method predicts drug−target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84%, and 91% for agents ranked in the top 10, 20, 30, and 40, respectively, out of all 3671 drugs. Drugs ranked in the top 1−40 that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an antiparasitic with recently discovered and unexpected anticancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity and angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27 000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets.
BRCA1 can regulate estrogen receptor-a (ERa) activity. This study tested the hypotheses that Brca1 loss in mammary epithelium alters the estrogenic growth response and that exposure to increased estrogen or ERa collaborates with Brca1 deficiency to accelerate preneoplasia and cancer development. Longer ductal extension was found in mammary glands of Brca1 f/f;MMTV-Cre mice during puberty as compared to wild-type mice. Terminal end bud differentiation was impaired in Brca1 mutant mice with preservation of prolactin-induced alveolar differentiation. Exogenous estrogen stimulated an abnormal sustained increase in mammary epithelial cell proliferation and the appearance of ERa-negative preneoplasia in postpubertal Brca1 mutant mice. Carcinogenesis was investigated using Brca1 f/f;MMTV-Cre mice hemizygous for p53. Exogenous estrogen increased the percentage of mice with multiple hyperplastic alveolar nodules. Targeted conditional ERa overexpression in mammary epithelial cells of mice that were Brca1 mutant and hemizygous for p53 increased the percentage of mice exhibiting multiple hyperplastic nodules, invasive mammary cancers and cancer multiplicity. Significantly more than half of the preneoplasia and cancers were ERa negative even as their initiation was promoted by ERa overexpression.
Cadherin-11 (CDH11), associated with epithelial to mesenchymal transformation in development, poor prognosis malignancies and cancer stem cells, is also a major therapeutic target in rheumatoid arthritis (RA). CDH11 expressing basal-like breast carcinomas and other CDH11 expressing malignancies exhibit poor prognosis. We show that CDH11 is increased early in breast cancer and ductal carcinoma in-situ. CDH11 knockdown and antibodies effective in RA slowed the growth of basal-like breast tumors and decreased proliferation and colony formation of breast, glioblastoma and prostate cancer cells. The repurposed arthritis drug celecoxib, which binds to CDH11, and other small molecules designed to bind CDH11 without inhibiting COX-2 preferentially affect the growth of CDH11 positive cancer cells in vitro and in animals. These data suggest that CDH11 is important for malignant progression, and is a therapeutic target in arthritis and cancer with the potential for rapid clinical translation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.