Vibration phenomena in mechanical structures including conical shells are usually undesirable. In order to overcome this problem, this study investigates active vibration control of isotropic truncated conical shells containing magnetostrictive actuators. The first-order shear deformation theory and the Hamilton principle are handled to obtain vibration equations. Moreover, a negative velocity feedback control law is used to actively suppress the vibration. The Ritz and modified Galerkin methods are utilized to obtain results of shell vibration. The results are validated by comparison with the results of literature and finite element software. Finally, the effects of control gain value, magnetostrictive layers thickness, isotropic layer thickness, length and semi-vertex angle of the conical shell on vibration suppression characteristics are obtained in details.
In this paper, for the first time active vibration control of rotating laminated composite truncated conical shells containing magnetostrictive layers by employing first-order shear deformation theory is investigated. The active vibration control task is done through magnetostrictive layers employing velocity feedback control law. The effects of initial hoop tension and centrifugal and Coriolis forces are considered in extraction of the partial differential equations through Hamilton principle. The ordinary differential equations are derived by employing modified Galerkin method. This study agrees with the mentioned results of the literature. Finally, the effects of several parameters on the vibration suppression are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.