The need of enhanced seismic analysis and design rules for petrochemical piping systems is widely recognized, where the allowable stress design method is still the customary practice. This paper presents an up-to-date performance-based seismic analysis (PBSA) of piping systems. The concept of performance-based analysis is introduced and a link between limit states and earthquake levels is proposed, exemplifying international code prescriptions. A brief review on seismic design criteria of piping systems is then provided by identifying the main critical issues. Finally, the actual application of the performance-based approach is illustrated through nonlinear seismic analyses of two realistic petrochemical piping systems
The prevailing lack of proper and uniform seismic design guidelines for piping systems impels designers to follow standards conceived for other structures, such as buildings. The modern performance-based design approach is yet to be widely adopted for piping systems, while the allowable stress design method is still the customary practice. This paper presents a performance-based seismic analysis of petrochemical piping systems coupled with support structures through a case study. We start with a concept of performance-based analysis, followed by establishing a link between limit states and earthquake levels, exemplifying Eurocode and Italian prescriptions. A brief critical review on seismic design criteria of piping, including interactions between piping and support, is offered thereafter. Finally, to illustrate actual applications of the performance-based analysis, non-linear analyses on a realistic petrochemical piping system is performed to assess its seismic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.