Cryptosporidiosis is a common protozoan infection causing morbidity and mortality in young cattle and may be zoonotically transmitted to humans. So far, there is no data available on the presence of Cryptosporidium spp. in the Sudan. The aim of this study was to isolate, identify, and genotype Cryptosporidium oocysts sampled from diarrheic calves housed at different farms in three different municipalities in Khartoum State (Khartoum, Khartoum North, Omdurman). A total of 149 fecal samples were evaluated microscopically for the presence of Cryptosporidium oocysts using the modified Ziehl-Neelsen staining method and 87 (58.3%) samples tested positive. Positive and negative samples were further analyzed by nested PCR targeting the SSU rRNA region. Positive samples were subjected to restriction enzyme analysis of PCR amplicons (PCR-RFLP). Nested PCR identified Cryptosporidium DNA in 53 samples (35.5%); restriction digestion of the PCR products revealed the presence of C. parvum (73.5%), C. ryanae (13.2%), C. andersoni (7.5%), and C. bovis (1.8%). Species distribution was clearly related to age with C. parvum being the predominant species in dysenteric pre-weaned calves. Sequencing of three genes (SSU rRNA, COWP, and GP60) for three C. parvum isolates originating from the three different municipalities showed that all belong to C. parvum subtype family IId. Based on data obtained by GP60, sequencing the two C. parvum isolates from Khartoum and Omdurman represent subtype IIdA18G1, whereas oocysts isolated in Khartoum North belong to subtype IIdA19G1. The observed genotypes are zoonotic and thus C. parvum in calves is potentially a health risk to humans in Khartoum State, Sudan. To the best of our knowledge, this is the first reported attempt to characterize Cryptosporidium isolated from cattle in the Sudan.
Coccidiosis is an economically important gastrointestinal disease in domestic fowl. Eimeria species are the causative agents of avian coccidiosis. Current challenges in management and prevention of eimeriosis enhance the need for research in this field. Sporozoite purification is a necessary step for Eimeria spp. in vitro infection models. Current alternatives such as DE-52 anion exchange chromatography and Percoll gradient require time and resources. We present a modified protocol consisting on vacuum filtration of sporozoites using a disposable 5-μL filter. Yield percentages were similar to those reported for Percoll gradient purification. By reducing time and efforts during sporozoite purification, it could be possible to increase resources in other areas of Eimeria studies.
Poultry coccidiosis causes considerable economical losses to the livestock industry. Eimeria parasites are responsible for this disease. On a global scale, E. acervulina and E. tenella are amongst the most common Eimeria spp. infecting broilers. E. tenella is commonly used as infection model in in vivo and in vitro studies. On the other hand, E. acervulina has barely been studied under in vitro conditions. A well established and widely used in vitro model for E. tenella infection is the Madin-Darby bovine kidney cell line (MDBK); however, little is known regarding suitability of MDBK cells as host cells for E. acervulina. We infected MDBK monolayers with two different doses, 5 × 104 and 2 × 105, of E. acervulina sporozoites and evaluated cultures at 24 and 96 h post infection (hpi). For comparison, we ran an identical infection assay using E. tenella sporozoites. To assess parasite reproduction, the number of DNA copies of E. acervulina SCAR marker and E. tenella ITS-1 gene was quantified using real-time quantitative PCR. We found that the number of E. acervulina copies increased significantly at 24 hpi in comparison to E. tenella (p < 0.05). After 96 hpi, E. acervulina gene copies were considerably reduced while E. tenella continued to multiply (p < 0.05). Our results show that MDBK monolayers could be used for in vitro research aimed to study E. acervulina sporozoite cell invasion. Nevertheless, modifications of in vitro cultivation appear necessary to allow qualitative and quantitative studies over longer periods of parasite reproduction.
Trichomonas gallinae are parasitic flagellates of importance in wild and domestic birds. The parasite is worldwide distributed, and Columbine birds are its main host. Current research focuses mostly on epidemiological and phylogenetic studies. However, there is still a lack of knowledge regarding parasite-host interaction or therapy development. Real-time PCR is a useful tool for diagnostic and quantification of gene copies in a determined sample. By amplification of a 113-bp region of the 18S small subunit ribosomal RNA gene, a SYBR green-based real-time PCR assay was developed. A standard curve was prepared for quantification analysis. Assay efficiency, linearity, and dissociation analysis were successfully performed. Specificity, sensibility, and reproducibility analysis were tested. This assay could be a useful tool not only for diagnostic purposes but also for future in vivo and in vitro T. gallinae studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.