Diacerein (DCN), a potent anti-inflammatory API used to treat osteoarthritis yet, it suffers from poor water solubility which affects its oral absorption. Unabsorbed colonic DCN is converted into rhein, which is responsible for laxation as a main side effect of DCN treatment. Therefore, in this study orally disintegrating tablets (ODTs) loaded with optimized DCN solid dispersion system were prepared using different co-processed excipients (Prosolv® ODT, Pharmaburst® 500 and F-melt®), aiming to achieve improved solubility, rapid absorption and consequently limited amount of rhein reaching the colon. Prepared ODTs were evaluated for physical characteristics, in-vitro drug release, disintegration and wetting times. Dissolution parameters; dissolution efficiency percent at 10 (DE (10 min)%) and 30 (DE (30 min)%) min and mean dissolution time (MDT) were determined. The optimized ODT showed 1.50 and 1.12 fold increase in DE (10 min)% and DE (30 min)%, respectively and 2 fold decrease in MDT, compared to Diacerein® capsules. In-vivo anti-inflammatory effect of optimized ODT, using rat paw edema revealed significant increase in edema inhibition (p < 0.0465) and promoted onset of action compared to Diacerein® capsules at 0.5 hr. It could be concluded that optimized ODT could be promising for enhanced dissolution and rapid absorption of DCN from the oral cavity.
Diacerein (DCN), a BCS II compound, suffers from poor aqueous solubility and limited bioavailability. Solid dispersion systems (SD) of DCN were prepared by solvent evaporation, using hydrophilic polymers. In-vitro dissolution studies were performed and dissolution parameters were evaluated. I-Optimal factorial design was employed to study the effect of formulation variables (drug:polymer ratio and polymer type) on the measured responses including; drug content (DC) (%), dissolution efficiency at 15 min (DE (15 min)%) and 60 min (DE (60 min)%) and mean dissolution time (MDT) (min). The optimized SD was selected, prepared and evaluated, allowing 10.83 and 3.42 fold increase in DE (15 min)%, DE (60 min)%, respectively and 6.07 decrease in MDT, compared to plain drug. DSC, XRD analysis and SEM micrographs confirmed complete amorphization of DCN within the optimized SD. Physiologically based pharmacokinetic (PBPK) modeling was employed to predict PK parameters of DCN in middle aged healthy adults and geriatrics. Simcyp® software established in-vivo plasma concentration time curves of the optimized SD, compared to plain DCN. Relative bioavailability of the optimized SD compared to plain drug was 229.52% and 262.02% in healthy adults and geriatrics, respectively. Our study reports the utility of PBPK modeling for formulation development of BCS II APIs, via predicting their oral bio-performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.