This study aims to investigate whether modification of solid lipid nanoparticles (SLNs) with chitosan (CTS) and polyethylene glycol (PEG) coatings enhances corneal retention time and transcorneal bioavailability. Ofloxacin (OFLOX) was selected as the model drug because of its potential benefits for the treatment of local eye infections. The OFLOX-CTS-PEG-SLN was prepared by a modified emulsion/solvent evaporation technique. A central composite design was implemented to investigate the influence of total lipid/ drug ratio, surfactant concentration, PEG stearate concentration in the lipid mixture, and CTS concentration on size, entrapment, transcorneal permeation, and adhesion to the corneal mucosal membrane. The optimized OFLOX-CTS-PEG-SLN was characterized for OFLOX cumulative percentage released in simulated tear fluid and permeated across the excised bovine corneal membrane. Moreover, nanoparticle morphology, eye irritation via histopathological analysis, and OFLOX concentration in the ocular fluids and tissues were determined. A total lipid/drug ratio of 19:1, Tween 80 of 2%, PEG stearate concentration in the lipid mixture (% w/w) of 2.6%, and CTS concentration (% w/v) of 0.23% produced 132.9 nm particles entrapping 74.8% of the total drug added. The particles detached from the corneal membrane at a force of 3700 dyne/cm 2 . The %OFLOX released from the optimized nanoparticles was 63.3, and 66% of the drug permeated after 24 h. Compared to Oflox® drops, the optimized OFLOX-CTS-PEG-SLN exhibited similar tolerability but two-to threefold higher concentrations in the eyes of rabbits. Coating of SLN with chitosan and PEG augments the ocular bioavailability of OFLOX by increasing transcorneal permeation and enhancing mucoadhesion strength.
This study investigates potentials of solid lipid nanoparticles (SLN)-based gel for transdermal delivery of tenoxicam (TNX) and describes a pharmacokinetic-pharmacodynamic (PK-PD) modeling approach for predicting concentration-time profile in skin. A 2 factorial design was adopted to study the effect of formulation factors on SLN properties and determine the optimal formulation. SLN-gel tolerability was investigated using rabbit skin irritation test. Its anti-inflammatory activity was assessed by carrageenan-induced rat paw edema test. A published Hill model for in vitro inhibition of COX-2 enzyme was fitted to edema inhibition data. Concentration in skin was represented as a linear spline function and coefficients were estimated using non-linear regression. Uncertainty in predicted concentrations was assessed using Monte Carlo simulations. The optimized SLN was spherical vesicles (58.1 ± 3.1 nm) with adequate entrapment efficiency (69.6 ± 2.6%). The SLN-gel formulation was well-tolerated. It increased TNX activity and skin level by 40 ± 13.5, and 227 ± 116%, respectively. Average C and AUC predicted by the model were 2- and 3.6-folds higher than the corresponding values computed using in vitro permeability data. SLN-gel is a safe and efficient carrier for TNX across skin in the treatment of inflammatory disorders. PK-PD modeling is a promising approach for indirect quantitation of skin deposition from PD activity data.
Abstract. Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to firstpass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 2 3 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24 ) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.