The benefits of requirement traceability are well known and documented. The traceability links between requirements and code are fundamental in supporting different activities in the software development process, including change management and software maintenance. These links can be obtained using manual or automatic means. Manual trace retrieval is a time-consuming task. Automatic trace retrieval can be performed via various tools such as Information retrieval or machine learning techniques. Meanwhile, a big concern associated with automated trace retrieval is the low precision problem primarily caused by the term mismatches across documents to be traced. This study proposes an approach that addresses the term mismatch problem to obtain the greatest improvements in the trace retrieval accuracy. The proposed approach uses clustering in the automated trace retrieval process and performs an experimental evaluation against previous benchmarks. The results show that the proposed approach improves the trace retrieval precision.
On social media platforms, it is essential to express one's thoughts, opinions, and reviews. One of the most widely used linguistic forms to criticize or express a person's ideas with ridicule is sarcasm, where the written text has both intended and unintended meanings. The sarcastic text frequently reverses the polarity of the sentiment. Therefore, detecting sarcasm in the text has a positive impact on the sentiment analysis task and ensures more accurate results. Although Arabic is one of the most frequently used languages for web content sharing, the sarcasm detection of Arabic content is restricted and yet still naive due to several challenges, including the morphological structure of the Arabic language, the variety of dialects, and the lack of adequate data sources. Despite that, researchers started investigating this area by introducing the first Arabic dataset and experiment for irony detection in 2017. Thus, our review focuses on studies published between 2017 and 2022 on Arabic sarcasm detection. We provide a thorough literature review of Artificial Intelligence (AI) techniques and benchmarks used for Arabic sarcasm detection. In addition, the challenges of Arabic sarcasm detection are investigated, along with future directions, focusing on the challenge of publicly available Arabic sarcasm datasets.INDEX TERMS Artificial intelligence (AI), Arabic sarcasm detection, deep learning (DL), machine learning (ML), natural language processing (NLP), sentiment analysis (SA).
Classification predicts classes of objects using the knowledge learned during the training phase. This process requires learning from labeled samples. However, the labeled samples usually limited. Annotation process is annoying, tedious, expensive, and requires human experts. Meanwhile, unlabeled data is available and almost free. Semi-supervised learning approaches make use of both labeled and unlabeled data. This paper introduces cluster and label approach using PSO for semi-supervised classification. PSO is competitive to traditional clustering algorithms. A new local best PSO is presented to cluster the unlabeled data. The available labeled data guides the learning process. The experiments are conducted using four state-of-the-art datasets from different domains. The results compared with Label Propagation a popular semi-supervised classifier and two state-of-the-art supervised classification models, namely k-nearest neighbors and decision trees. The experiments show the efficiency of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.