BACKGROUND AND OBJECTIVESHelicobacter pylori is a Gram negative bacteria that causes peptic ulceration and gastric adenocarcinoma. H pylori virulence factors, such as cagA and dupA, are important to study in populations as they contribute to disease risk. This study aimed to look at the distribution of the cagA and dupA genes in H pylori strains isolated from patients suffering from gastroduodenal diseases in Kurdistan region, Iraq.DESIGN AND SETTINGSA cross-sectional study conducted between June 2011 and January 2012. Biopsies were collected from the Endoscopy Department in Duhok and Sulaimania hospitals, Kurdistan region, northern Iraq.PATIENTS AND METHODSUpper gastrointestinal (GI) endoscopy examination was performed and 4 gastric biopsies (2 from the antrum and 2 from the corpus) were obtained from 204 patients. H pylori positivity was examined by CLO test; then the association between disease status and virulence factors was assessed by polymerase chain reaction.RESULTS154 (75%) of our samples were found to be H pylori + by CLO test. Endoscopic diagnoses for those who were positive were as follows: peptic ulcer disease (PUD) including duodenal ulcer, 45; gastric ulcer, 23; and no ulcer (NPUD), 86. The overall prevalence rates of cagA and dupA were 72.7% and 18.8%, respectively. While a significant association between cagA and PUD was observed (P ≤ .017; OR=0.4; CI=0.18–0.85), no relationship between dupA and PUD could be seen.CONCLUSIONThese data suggested that the presence of cagA may be a predictor of clinical outcome in Kurdistan region, northern Iraq.
This work aimed to develop accurate, quick, and practical tools for the detection of residues of penicillin G antibiotic in biological and non-biological samples. The assays were developed based on the binding mechanism of β-lactam to penicillin-binding proteins; samples of different concentrations of penicillin G were incubated with in vitro expressed 6X-Histidine-tagged soluble penicillin-binding protein (PBP2x*) of Streptococcus pneumoniae (S. pneumoniae), whereby penicillin G in samples specifically binds to PBP2x*. The fluorescent-labeled β-lactam analogue Bocillin FL was used as a competent substrate, and two different routes estimated the amounts of the penicillin G. The first route was established based on the differences in the concentration of non-bounded Bocillin FL molecules within the reactions while using a real-time polymerase chain reaction (PCR)-based method for fluorescence detection. The second route depended on the amount of the relative intensity of Bocillin FL bounded to Soluble PBP-2x*, being run on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-page), visualized by a ChemiDoc-It®2 Imager, and quantified based on the fluorescence affinity of the competent substrate. While both of the methods gave a broad range of linearity and high sensitivity, the on column based real-time method is fast, non-time consuming, and highly sensitive. The method identified traces of antibiotic in the range 0.01–0.2 nM in addition to higher accuracy in comparison to the SDS-based detection method, while the sensitivity of the SDS-based method ranged between 0.015 and 2 µM). Thus, the on column based real time assay is a fast novel method, which was developed for the first time based on the binding inhibition of a fluorescence competitor material and it can be adapted to screen traces of penicillin G in any biological and environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.