When a breast lump is detected through palpation, mammography or ultrasonography, the final test for characterization of the tumour, whether it is malignant or benign, is biopsy. This is invasive and carries hazards associated with any surgical procedures. The present work was undertaken to study the feasibility for such characterization using non-invasive electrical impedance measurements and machine learning techniques. Because of changes in cell morphology of malignant and benign tumours, changes are expected in impedance at a fixed frequency, and versus frequency of measurement. Tetrapolar impedance measurement (TPIM) using four electrodes at the corners of a square region of sides 4 cm was used for zone localization. Data of impedance in two orthogonal directions, measured at 5 and 200 kHz from 19 subjects, and their respective slopes with frequency were subjected to machine learning procedures through the use of feature plots. These patients had single or multiple tumours of various types in one or both breasts, and four of them had malignant tumours, as diagnosed by core biopsy. Although size and depth of the tumours are expected to affect the measurements, this preliminary work ignored these effects. Selecting 12 features from the above measurements, feature plots were drawn for the 19 patients, which displayed considerable overlap between malignant and benign cases. However, based on observed qualitative trend of the measured values, when all the feature values were divided by respective ages, the two types of tumours separated out reasonably well. Using K-NN classification method the results obtained are, positive prediction value: 60%, negative prediction value: 93%, sensitivity: 75%, specificity: 87% and efficacy: 84%, which are very good for such a test on a small sample size. Study on a larger sample is expected to give confidence in this technique, and further improvement of the technique may have the ability to replace biopsy.
An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehicle detection has become a vital subject for research to ensure safety and avoid accidents. New vision-based on-road nighttime vehicle detection and tracking system are suggested in this survey paper using taillight and headlight features. Using computer vision and some image processing techniques, the proposed system can identify vehicles based on taillight and headlight features. For vehicle tracking, a centroid tracking algorithm has been used. Euclidean Distance method has been used for measuring the distances between two neighboring objects and tracks the nearest neighbor. In the proposed system two flexible fixed Region of Interest (ROI) have been used, one is the Headlight ROI, and another is the Taillight ROI that could adapt to different resolutions of the images and videos. The achievement of this research work is that the proposed two ROIs can work simultaneously in a frame to identify oncoming and preceding vehicles at night. The segmentation techniques and double thresholding method have been used to extract the red and white components from the scene to identify the vehicle headlights and taillights. To evaluate the capability of the proposed process, two types of datasets have been used. Experimental findings indicate that the performance of the proposed technique is reliable and effective in distinct nighttime environments for detection and tracking of vehicles. The proposed method has been able to detect and track double lights as well as single light such as motorcycle light and achieved average accuracy and average processing time of vehicle detection about 97.22% and 0.01 s per frame respectively.
Detecting human efficiently is an important field of research and has many applications such as intelligent vehicle, robotics and video surveillance. Histogram of Oriented Gradient (HOG) is one of the eminent algorithms for human shape detection. HOG features are extracted from all location of a dense grid on an image region and use linear Support Vector Machine (SVM) to classify the combined features. Although HOG gives an accurate description of the contour of human body, it requires a large computational time. We studied the fundamental idea and consider features that have high percentage to contain edge. In this proposed method we used difference of Gaussian to obtain the edge percentage of each feature. Then a threshold is used to remove features with low edge percentage. Selected features then classified using linear SVM. Experiments on INRIA dataset demonstrate that the proposed method not only reduce the dimension of the HOG features but also outperforms. General TermsPattern Recognition, Image Processing.
In this paper we present a music retrieval method. The algorithm works in two steps: noise cancellation and music retrieval. In noise cancellation step we apply filtering on psychoacoustic representation of the given music signal to get a clean noise-free signal which can truly represent the music. Each music has a particular and unique beat pattern called main beat. This representative feature from the noise-free signal is extracted which is followed by one matching method at the retrieval stage. Similar types of features are extracted from the music database or training music as well as the test music. For feature extraction, a music signal is primarily segmented into small windows in the time domain. Extracted features from both the training and query music are matched using similarity matching algorithm. 94% retrieval accuracy of our method is quiet satisfactory. Our experimental result shows the feasibility of our approach.
Vehicle number plate detection and recognition is an integral part of the IntelligentTransport System (ITS) as every vehicle has a number plate as part of its identity. The quantity of vehicles on road is growing in the modern age, so numerous crimes are also increasing day by day. Almost every day the news of missing vehicles and accidents are perceived. Vehicles tracking is often required to investigate all these illegal activities. So, vehicle number plate identification, as well as recognition, is an active field of study. However, vehicle number plate identification has always been a challenging task for some reasons, for example, brightness changes, vehicle shadows, and non-uniform license plate character type, various styles, and environment color effects. In this review work, various state-of-the-art vehicle number plate detection, as well as recognition strategies, have been outlined on how researchers have experimented with these techniques, which methods have been developed or used, what datasets have been focused on, what kinds of characters have been recognized and how much progress have been achieved. Hopefully, for future research, this review would be very useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.