Background: 2, 4-Dichlorophenoxyacetic acid (2, 4-D) is a widely used herbicide known to be moderately toxic. Extensive use and poor biodegradability of 2, 4-D has resulted in its ubiquitous presence in the environment, and has led to contamination of surface and ground waters. Objectives: At present study, single-walled carbon nanotubes (SWCNTs) were used for the sorption of 2, 4-D from aqueous solutions.
Materials and Methods:The effect of various operating parameters such as initial concentration of 2, 4-D, contact time, adsorbent dosage, and pH were investigated. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. Results: Maximum adsorption capacity of the SWCNTs was 979.6 mg/g at pH5, contact time 45 min, initial concentration of 5000 µg/L, and 23 ± 2 •C temperatures, when 97.96% of 2, 4-D herbicide were removed. The adsorption equilibriums were analyzed by Langmuir and Freundlich isotherm models. It was found that the data fitted to Langmuir (R2 = 0.9987) better than Freundlich (R2 = 0.9727) model. Conclusions: According to achieved results, it was defined that SWCNTs is a quite effective adsorbent in removal of 2, 4-D from aqueous environments.
Background: 2, 4-Dichlorophenoxyacetic acid (2, 4-D) is a widely used herbicide known to be moderately toxic. Extensive use and poor biodegradability of 2, 4-D has resulted in its ubiquitous presence in the environment, and has led to contamination of surface and ground waters. Objectives: At present study, single-walled carbon nanotubes (SWCNTs) were used for the sorption of 2, 4-D from aqueous solutions. Materials and Methods: The effect of various operating parameters such as initial concentration of 2, 4-D, contact time, adsorbent dosage, and pH were investigated. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. Results: Maximum adsorption capacity of the SWCNTs was 979.6 mg/g at pH5, contact time 45 min, initial concentration of 5000 µg/L, and 23 ± 2 •C temperatures, when 97.96% of 2, 4-D herbicide were removed. The adsorption equilibriums were analyzed by Langmuir and Freundlich isotherm models. It was found that the data fitted to Langmuir (R2 = 0.9987) better than Freundlich (R2 = 0.9727) model. Conclusions: According to achieved results, it was defined that SWCNTs is a quite effective adsorbent in removal of 2, 4-D from aqueous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.