Reactive Powder Concrete can be considered as a special type of concrete in which the coarse aggregate will be eliminated to get a homogenous microstructure with a maximum density for final result. Many researchers presented a state of the art review on reactive powder's production, mechanical properties, durability, development and applications. But the review about structural behavior is hardly to found. Because of importance of this type of concrete and its structural applications. This paper focused on review the researchers that deals with structural behavior of reactive powder concrete beams under bending load. Also review the proposed design equations related with reactive concrete behavior. Before starting a review of strength , stress-strain relation and ductility are presented because of their importance and effect on structure behavior of beams under bending. According to review of previous studies the type of fibers and its content as volumetric ratio, type of pozalanic materials and its content , amount of longitudinal steel reinforcement are main factors that affected the flexural behavior of reinforced Reactive Powder Concrete
In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isolated in the equation from the main variable (interface slip). The exact solution was obtained by considering appropriate boundary conditions according to load types and location. A computer program has been written using MATLAB R2013a to simplify the process of computation of section properties where the load applied iteratively from zero to ultimate capacity of the beam, and the results are compared with available experimental results which show good agreement.
As the composite section reaches its ultimate capacity in bending and lower flange start yielding due to excessive loading, cover plate are furnished in order to increase load carrying capacity of beam. In the process of strengthening, using of cover plate as a percent of the area of lower flange of steel section equal to 41%, 82% and 164% will increase the beam carrying capacity by 15%, 30% and 43% respectively; also using the same above mentioned area of cover plate will reduce the central deflection by 59%, 72% and 80% respectively.
The paper shows the final findings of the effect of metakaolin on the strengths properties of concrete exposed to crude oil. Sulfate resistance Portland cement of V type was used and specimens of concrete were adjusted and subjected to a solution of concentrated crude oil. However, the samples are cured in a control media at immersion ages of (28, 56 & 120 days) with ambient temperature, then samples have been kept in curing water for comparisons purpose as well. The results explain that the use of metakaolin reinforces compressive, flexural and splitting resistance of concrete which is exposed to crude oil. The compressive strength reduction increased from 8.0% at (28 days) to 37.7% at (120 days) curing for normal weight concrete (NW) whereas the concrete incorporating metakaolin (MC) has a reduction of 6.0% at (28 days) & 29.3% at (120 days).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.