The Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload that operated from January 2016 through July of 2017 on the European Space Agency's LISA Pathfinder spacecraft. The joint goal of the NASA and ESA missions was to validate key technologies for a future space-based gravitational wave observatory targeting the source-rich milliHertz band. The two primary components of ST7-DRS are a micropropulsion system based on colloidal micro-Newton thrusters (CMNTs) and a control system that simultaneously controls the attitude and position of the spacecraft and the two free-flying test masses (TMs). This paper presents our main experimental results and summarizes the overall the performance of the CMNTs and control laws. We find that the CMNT performance to be consistent with pre-flight predictions, with a measured system thrust noise on the order of 100 nN/ √ Hz in the 1 mHz ≤ f ≤ 30 mHz band. The control system maintained the TM-spacecraft separation with an RMS error of less than 2 nm and a noise spectral density of less than 3 nm/ √ Hz in the same band. Thruster calibration measurements yield thrust values consistent with the performance model and ground-based thrust-stand measurements, to within a few percent. We also report a differential acceleration noise between the two test masses with a spectral density of roughly 3 fm/s 2 / √ Hz in the 1 mHz ≤ f ≤ 30 mHz band, slightly less than twice as large as the best performance reported with the baseline LISA Pathfinder configuration and below the current requirements for the Laser Interferometer Space Antenna (LISA) mission.
The zodiacal dust complex, a population of dust and small particles that pervades the solar system, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. We present a new set of data obtained from direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory. Pathfinder employed a technique known as drag-free control that achieved rejection of external disturbances, including particle impacts, using a micropropulsion system. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum, direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hr of Pathfinder data. We report a total of 54 candidates with transferred momenta ranging from 0.2 to 230 μNs. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system, including those resulting from Jupiter-family comets (JFCs), Oort Cloud comets, Halley-type comets, and asteroids. We find that our measured population is consistent with a population dominated by JFCs, with some evidence for a smaller contribution from Halley-type comets, in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.
The Cassini spacecraft consists of 12 instruments: 4 Optical Remote Sensing Instruments (ORS), 6 In-situ observation instruments to study Magnetospheric and Plasma Science (MAPS), one Radar instrument, and one Radio Science (RSS) instrument. When this complex mission was initially architected, much of the early emphasis was placed on the spacecraft function and design, rather than operations. The spacecraft and mission design posed significant challenges to the science and sequence development process for the four-year tour of the Saturnian system.The science planning and sequence development process produces a comprehensive set of commands for all science and engineering activities for an approximate 40 day time period. The end-to-end sequence design process consists of five phases: 1) Integration of the Science Operations Plan (SOP), a high-level plan of science and engineering activities, detailing their timing, power, thermal, data volume, and pointing profiles 2) SOP Implementation, in which resource conflicts are resolved and activities constraint checked 3) Aftermarket and SOP Update, in which the SOP is updated while in tour using the latest information on the navigation ephemeris, and the spacecraft's and instruments' performance 4) Science and Sequence Update Process, which results in an integrated, validated, uplinkable, and flyable distributed sequence 5) Execution, which includes system-level and instrument-internal real-time commands, anomaly response, and sequence pointing and timing adaptation using the latest ephemeris information Each phase of the sequence development process had to overcome many operational challenges due to the immense complexity of the spacecraft, tour design, pointing capabilities, flight rules and software development. This paper will address the specific challenges related to each of those complexities and the methods used to overcome them during operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.