Coughing and sneezing are the main ways of spreading coronavirus-2019 (SARS-CoV-2). People sometimes need to work together at close distances. This study presents the results of the computational fluid dynamics (CFD) simulation of the dispersion and transport of respiratory droplets emitted by an infected person who coughs in an indoor space with an air ventilation system. The resulting information is expected to help in risk assessment and development of mitigation measures to prevent the infection spread. The turbulent flow of air in the indoor space is simulated using the k-ε model. The particle equation of motion included the drag, the Saffman lift, the Brownian force and gravity/buoyancy forces. The innovation of this study includes A: Using the Eulerian–Lagrangian CFD model for the simulation of the cough droplet dispersion. B: Assessing the infection risk by the Wells–Riley equation. C: A safer design for the ventilation system (changing the ventilation supplies and exhausts in the indoor space and choosing the right location for air ventilation). The droplet distribution in the indoor space is strongly influenced by the air ventilation layout. The air-curtain flow pattern significantly reduces the dispersion and spreading of virus-infected cough droplets. When the ventilation air flow occurs along the room length, it takes about 115 s for the cough droplets to leave the space. However, when the ventilation air flow is across the width of the indoor space and there are air curtain-type air flow patterns in the room, it takes about 75 s for the cough droplets to leave the space.
Coughing and sneezing are the main ways of spreading coronavirus-2019 (SARS-CoV-2). Strategically critical facilities such as power plants cannot be shut down even in challenging situations like the COVID-19 outbreak. The personnel of the power plants' control room need to work together at close distances. This study presents the computational fluid dynamics (CFD) simulation results on the dispersion and transport of respiratory droplets emitted by an infected person coughs in a control room with an air ventilation system. This information would be helpful for risk assessment and for developing mitigation measures to prevent the spread of infection. The turbulent airflow in the control room is simulated using the k-ε model. The particle equation of motion included the drag, the Saffman lift, the Brownian, gravity/buoyancy, and thermophoresis forces. The simulation results showed that after 115 s, the cough droplets are dispersed in the entire room, and there is no safe (virus-free) space in the control room. Therefore, a safer design for the ventilation system is proposed by placing the ventilation air inlet and outlet registers across the control room and creating airflow patterns similar to air curtains that divided the room into three compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.