This article represents the features and capabilities of a newly developed application namely MASS (Mechanisms Analysis and Simulation Software) and the formulation and techniques therein. MASS is a general C++ application program whose main task is to construct and solve the governing algebraic differential motion equations of 3D multibody systems automatically in matrix forms complying with the computational algorithms required for numerical simulation. Newton-Raphson and SVD methods have been used for kinematical assembling and producing consistent initial conditions. Adaptive time-step Runge-Kutta-Fehlberg numerical integration methods might be used for forward dynamics problems. The governing equations perfectly describe the kinematics and dynamics of multibody systems within which 3D kinematical joints and collisions between rigid bodies might be taken into consideration. The unified computational technique for mathematical modeling of kinematical joints is the most important concept on top of which MASS has been implemented. It has occurred due to the existence of thirteen basic kinematical constraint equations. Each kinematical joint might be defined by a set of algebraic equations being selected from the mentioned basic equations. The unified dynamic models for collisions and impulsive loads have been also achieved using the mentioned technique. Simulation results obtained from MASS have been compared with that of the corresponding software of Working Model ver. 6 and a discussion about the coincidences and differences has been exposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.