Background: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.
Background Methicillin-resistant Staphylococus aureus (MRSA) is an important nosocomial and community-associated (CA) pathogen. Recently, a variant of the MRSA USA300 clone emerged and disseminated in South-America causing important clinical problems. Methods S. aureus isolates were prospectively collected (2006 to 2008) from 32 tertiary hospitals in Colombia, Ecuador, Peru, and Venezuela. MRSA isolates were subjected to antimicrobial susceptibility testing, pulsed field gel electrophoresis (PFGE), and categorized as healthcare-associated (HA)-like or CA-like clones based on genotypic characteristics and detection of genes encoding the Panton-Valentine leukocidin (PVL) and staphylococcal cassette mec (SCCmec) IV. Additionally, MLST of representative isolates of each major CA-MRSA pulsotype, and detection of USA300-associated toxins and the arcA gene were performed in all isolates categorized as CA-MRSA. Results A total of 1570 S. aureus were included; 651 were MRSA (41%), with the highest rates of MRSA isolation in Peru (62%), and lowest in Venezuela (26%) and 71%, 27%, and 2% were classified as HA-like, CA-like, and non-CA/HA-like clones, respectively. Only 9 MRSA isolates were confirmed to have reduced susceptibility to glycopeptides (GISA phenotype). The most common pulsotype (designated ComA) amongst the CA-like MRSA strains was found in 96% of isolates with the majority (81%) having ≤6 bands difference with the USA300-0114 strain. Representative isolates of this clone were ST8 but, unlike the USA300-0114 strain, they harbored a different SCCmec IV subtype and lacked arcA (an indicator of the arginine catabolic mobile element (ACME)). Conclusion A variant CA-MRSA USA300 clone has now become established in South America and, in some countries, is endemic in hospital settings.
BackgroundEnterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references.ResultsIn this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported.ConclusionsOur findings along with other studies show that HA clonal lineages harbor specific genetic elements as well as sequence differences in the core genome which may confer selection advantages over the more heterogeneous CA E. faecium isolates. Which of these differences are important for the success of specific E. faecium lineages in the hospital environment remain(s) to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.