Background: The coronavirus disease 2019 (COVID-19) pandemic has led us to use virtual solutions and emerging technologies such as artificial intelligence (AI). Recent studies have clearly demonstrated the role of AI in health care and medical practice; however, a comprehensive review can identify potential yet not fulfilled functionalities of such technologies in pandemics. Therefore, this scoping review study aims at assessing AI functionalities in the COVID-19 pandemic in 2022. Methods: A systematic search was carried out in PubMed, Cochran Library, Scopus, Science Direct, ProQuest, and Web of Science from 2019 to May 9, 2022. Researchers selected the articles according to the search keywords. Finally, the articles mentioning the functionalities of AI in the COVID-19 pandemic were evaluated. Two investigators performed this process. Results: Initial search resulted in 9123 articles. After reviewing the title, abstract, and full text of these articles, and applying the inclusion and exclusion criteria, 4 articles were selectd for the final analysis. All 4 were cross-sectional studies. Two studies (50%) were performed in the United States, 1 (25%) in Israel, and 1 (25%) in Saudi Arabia. They covered the functionalities of AI in the prediction, detection, and diagnosis of COVID-19. Conclusions: To the extent of the researchers’ knowledge, this study is the first scoping review that assesses the AI functionalities in the COVID-19 pandemic. Health-care organizations need decision support technologies and evidence-based apparatuses that can perceive, think, and reason not dissimilar to human beings. Potential functionalities of such technologies can be used to predict mortality, detect, screen, and trace current and former patients, analyze health data, prioritize high-risk patients, and better allocate hospital resources in pandemics, and generally in health-care settings.
Background: Phonocardiogram (PCG) signal provides valuable information for diagnosing heart diseases. However, its applications in quantitative analyses of heart function are limited because the interpretation of this signal is difficult. A key step in quantitative PCG is the identification of the first and second sounds (S1 and S2) in this signal. Objective: This study aims to develop a hardware-software system for synchronized acquisition of two signals electrocardiogram (ECG) and PCG and to segment the recorded PCG signal via the information provided in the acquired ECG signal. Material and Methods: In this analytical study, we developed a hardware-software system for real-time identification of the first and second heart sounds in the PCG signal. A portable device to capture synchronized ECG and PCG signals was developed. Wavelet de-noising technique was used to remove noise from the signal. Finally, by fusing the information provided by the ECG signal (R-peaks and T-end) into a hidden Markov model (HMM), the first and second heart sounds were identified in the PCG signal. Results: ECG and PCG signals from 15 healthy adults were acquired and analyzed using the developed system. The average accuracy of the system in correctly detecting the heart sounds was 95.6% for S1 and 93.4% for S2. Conclusion: The presented system is cost-effective, user-friendly, and accurate in identifying S1 and S2 in PCG signals. Therefore, it might be effective in quantitative PCG and diagnosing heart diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.