A dominating set D in a digraph is a set of vertices such that every vertex is either in D or has an in-neighbour in D. A dominating set D of a digraph is locating-dominating if every vertex not in D has a unique set of in-neighbours within D. The location-domination number γL(G) of a digraph G is the smallest size of a locating-dominating set of G. We investigate upper bounds on γL(G) in terms of the order of G. We characterize those digraphs with location-domination number equal to the order or the order minus one. Such digraphs always have many twins: vertices with the same (open or closed) in-neighbourhoods. Thus, we investigate the value of γL(G) in the absence of twins and give a general method for constructing small locating-dominating sets by the means of special dominating sets. In this way, we show that for every twin-free digraph G of order n, γL(G) ≤ 4n 5 holds, and there exist twin-free digraphs G with γL(G) = 2(n−2) 3 . If moreover G is a tournament or is acyclic, the bound is improved to γL(G) ≤ ⌈ n 2 ⌉, which is tight in both cases. 1 A set of vertices of an undirected graph G is a dominating set if it is a dominating set of the digraph obtained from G by replacing each edge by two symmetric arcs.
Signal machines form an abstract and idealized model of collision computing. Based on dimensionless signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle, or signal , moves at constant speed in continuous time and space. When signals meet, they get replaced by other signals. A signal machine defines the types of available signals, their speeds, and the rules for replacement in collision. A signal machine A simulates another one B if all the space-time diagrams of B can be generated from space-time diagrams of A by removing some signals and renaming other signals according to local information. Given any finite set of speeds S we construct a signal machine that is able to simulate any signal machine whose speeds belong to S . Each signal is simulated by a macro-signal , a ray of parallel signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as well as auxiliary signals that encode its id and the collision rules of the simulated machine. The simulation of a collision, a macro-collision , consists of two phases. In the first phase, macro-signals are shrunk, and then the macro-signals involved in the collision are identified and it is ensured that no other macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly. Considering all finite sets of speeds S and their corresponding simulators provides an intrinsically universal family of signal machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.