SUMMARY Objective To determine if type III collagen is concentrated in the chymotrypsin-extractable collagen pool from osteoarthritic articular cartilage to assess its potential as a biomarker of Osteoarthritis (OA) pathogenic mechanisms. Methods Full thickness articular cartilage from grossly normal surfaces was analyzed from femoral heads, obtained at hip replacement surgery, from OA (n = 10) and fracture (n = 10) patients. Collagen, extracted by α-chymotrypsin, was characterized by SDS-PAGE/Western blot analysis, ELISA and immunohistochemistry using monoclonal antibodies specific to collagens types II and III. Results α-Chymotrypsin extracted more collagen from OA than control cartilage. The extractable pool included collagen types II and III from both OA and control hips. Importantly, OA cartilage contained 6-fold more collagen type III than control cartilage, based on ELISA. The estimated total tissue ratio of collagen III/II was in the 1–10% range for individual OA cartilage samples, based on pepsin-solubilized collagen using SDS-PAGE densitometry. Collagen type III N-propeptide trimers were the main molecular fragments seen on Western blot analysis of OA and control extracts. The chymotrypsin-extracted type II collagen gave primarily full-length α1(II) chains and chain fragments of α1(II) on Western blot analysis from both OA and control tissues. Immunohistochemistry showed that type III collagen was more concentrated in the upper half of OA cartilage and in the territorial matrix around individual chondrocytes and chondrocyte clusters. Conclusions The findings confirm that collagen type III deposition occurs in adult articular cartilage but significantly more pronounced in osteoarthritic joints, presenting a potential marker of matrix repair or pathobiology.
BackgroundIt remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints.MethodsArticular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively.ResultsMankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group.ConclusionsIncreased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results suggest a common degradative pathway of collagen in articular cartilage of different joints. Furthermore, the study suggests that biochemical changes precede more overt OA changes and that chondrocytes may have a capability to compensate molecular loss in the early phase of OA.
Osteoarthritis (OA) is a common chronic disease, causing joint pain and reduced physical function. OA progresses slowly over a period of several years; to avoid an exacerbation of symptoms, it is critical to able to diagnose the disease as early as possible. The identification of disease‐specific biomarkers may enable such an early diagnosis. The aim of this study was to investigate potential biomarkers of cartilage metabolism in OA using a targeted multiplex approach by single reaction monitoring. Intact looking cartilage of femoral heads from patients with OA (n = 9) or femoral neck fractures (n = 12) was examined. Variations and relative quantifications of 35 selected extracellular matrix (ECM) proteins were analyzed using nano‐LC coupled to tandem mass spectrometry. Our study showed statistically significantly increased levels of asporin (ASPN), mimecan (MIME), matrilin‐3 (MATN3), cartilage intermediate layer protein 2 (CILP‐2), collagen VI, collagen II, and collagen III N‐propeptide in OA cartilage compared with non‐OA cartilage. The other proteins in the protein panel did not appear to be different between the two groups. In conclusion, we identified a number of cartilage matrix proteins which may represent early molecular changes in the OA process and may have potential to predict the development of OA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
The aim of this study was to analyze whether polymorphisms for the null alleles of Glutathione S-Transferase Mu-1 (GSTM1), Glutathione S-Transferase Theta-1 (GSTT1), and a low-activity genetic variation of epoxide hydrolase exon three (EPHX*3) affect the risk of developing polyneuropathy. The enzymes of these genes are important in the metabolism of toxic compounds. Seventy-nine patients with cryptogenic polyneuropathy (equivalent to chronic idiopathic axonal neuropathy) and 398 controls were tested for the genetic polymorphism. Medical records were reviewed to collect data regarding clinical findings at diagnosis, and exposure data was collected via questionnaires. The odds ratios (ORs) for the null forms of GSTM1 and GSTT1 and the normal activity YY form of EPHX*3 were close to one except GSTT1, which reached 1.86. The highest risk of polyneuropathy was found in smokers with GSTT1 null, who had a 3.7 times increased risk. Interactions between genes were analyzed and confirmed the increased OR for GSTT1, which was strongest if the patients had the low-activity HH form of EPHX*3 (OR 2.37). Our hypothesis is that the GSTT1 null polymorphism may be related to an impaired metabolism of toxic substances that could lead to nerve damage in the peripheral nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.