The new challenges presented by exascale system architectures have resulted in difficulty achieving the desired scalability using traditional distributed-memory runtimes. Asynchronous many-task systems (AMT) are based on a new paradigm showing promise in addressing these challenges, providing application developers with a productive and performant approach to programming on next generation systems. HPX is a C++ Library for concurrency and parallelism that is developed by The STE||AR Group, an international group of collaborators working in the field of distributed and parallel programming (Heller, Diehl, Byerly, Biddiscombe, & Kaiser, 2017; Kaiser et al., n.d.; Tabbal, Anderson, Brodowicz, Kaiser, & Sterling, 2011). It is a runtime system written using modern C++ techniques that are linked as part of an application. HPX exposes extended services and functionalities supporting the implementation of parallel, concurrent, and distributed capabilities for applications in any domain; it has been used in scientific computing, gaming, finances, data mining, and other fields.
Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor highproductivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards.
Linear algebra algorithms are used widely in a variety of domains, e.g machine learning, numerical physics and video games graphics. For all these applications, loop-level parallelism is required to achieve high performance. However, finding the optimal way to schedule the workload between threads is a non-trivial problem because it depends on the structure of the algorithm being parallelized and the hardware the executable is run on. In the realm of Asynchronous Many Task runtime systems, a key aspect of the scheduling problem is predicting the proper chunk-size, where the chunk-size is defined as the number of iterations of a for-loop assigned to a thread as one task. In this paper, we study the applications of supervised learning models to predict the chunk-size which yields maximum performance on multiple parallel linear algebra operations using the HPX backend of Blaze's linear algebra library. More precisely, we generate our training and tests sets by measuring performance of the application with different chunk-sizes for multiple linear algebra operations; vector-addition, matrix-vector-multiplication, matrix-matrix addition and matrix-matrix-multiplication. We compare the use of logistic regression, neural networks and decision trees with a newly developed decision tree based model in order to predict the optimal value for chunk-size. Our results show that classical decision trees and our custom decision tree model are able to forecast a chunk-size which results in good performance for the linear algebra operations.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.