In this study, human embryonic stem cell-derived cardiomyocytes were seeded onto controlled two-dimensional micropatterned features, and an improvement in sarcomere formation and cell alignment was observed in specific feature geometries. High-resolution photolithography techniques and microcontact printing were utilized to produce features of various rectangular geometries, with areas ranging from 2,500μm2 to 160,000μm2. The microcontact printing method was used to pattern non-adherent poly(ethylene glycol) regions on gold coated glass slides. Matrigel and fibronectin extracellular matrix (ECM) proteins were layered onto the gold-coated glass slides, providing a controlled geometry for cell adhesion. We used small molecule-based differentiation and an antibiotic purification step to produce a pure population of immature cardiomyocytes from H9 human embryonic stem cells. We then seeded this pure population of human cardiomyocytes onto the micropatterned features of various sizes and observed how the cardiomyocytes remodeled their myofilament structure in response to the feature geometries. Immunofluorescence was used to measure α-actinin expression, and phalloidin stains were used to detect actin presence in the patterned cells. Analysis of nuclear alignment was also used to determine how cell direction was influenced by the features. The seeded cells showed clear alignment with the features, dependent on the width rather than the overall aspect ratio of the features. It was determined that features with widths between 30μm and 80μm promoted highly aligned cardiomyocytes with a dramatic increase in sarcomere alignment relative to the long axis of the pattern. This creation of highly-aligned cell aggregates with robust sarcomere structures holds great potential in advancing cell-based pharmacological studies, and will help researchers to understand the means by which ECM geometries can affect myofilament structure and maturation in hESC-derived cardiomyocytes.
Introduction: Cardiac rehabilitation (CR) significantly reduces secondary cardiovascular events and mortality and is a class 1A recommendation by the American Heart Association (AHA) and American College of Cardiology (ACC). However, it remains an underutilized intervention and many eligible patients fail to enroll or complete CR programs. The aim of this review is to identify barriers to CR attendance and discuss strategies to overcome them.Areas Covered: Specific barriers to CR attendance and participation will be reviewed. This will be followed by a discussion of solutions/strategies to help overcome these barriers with a particular focus on home-based CR (HBCR).Expert Opinion: HBCR alone or in combination with center-based CR (CBCR) can help overcome many barriers to traditional CBCR participation, such as schedule flexibility, time commitment, travel distance, cost, and patient preference. Using remote coaching with indirect exercise supervision, HBCR has been shown to have comparable benefits to CBCR. At this time however, funding remains the main barrier to universal incorporation of HBCR into health systems, necessitating the need for additional cost benefit analysis and outcome studies. Ultimately the choice for HBCR should be based on patient preference and availability of resources.
Some bacteria, when infected by their viral parasites (bacteriophages), undergo a suicidal response that also terminates productive viral replication (abortive infection [Abi]). This response can be viewed as an altruistic act protecting the uninfected bacterial clonal population. Abortive infection can occur through the action of type III protein-RNA toxin-antitoxin (TA) systems, such as ToxINPa from the phytopathogen Pectobacterium atrosepticum. Rare spontaneous mutants evolved in the generalized transducing phage ΦM1, which escaped ToxINPa-mediated abortive infection in P. atrosepticum. ΦM1 is a member of the Podoviridae and a member of the “KMV-like” viruses, a subset of the T7 supergroup. Genomic sequencing of ΦM1 escape mutants revealed single-base changes which clustered in a single open reading frame. The “escape” gene product, M1-23, was highly toxic to the host bacterium when overexpressed, but mutations in M1-23 that enabled an escape phenotype caused M1-23 to be less toxic. M1-23 is encoded within the DNA metabolism modular section of the phage genome, and when it was overexpressed, it copurified with the host nucleotide excision repair protein UvrA. While the M1-23 protein interacted with UvrA in coimmunoprecipitation assays, a UvrA mutant strain still aborted ΦM1, suggesting that the interaction is not critical for the type III TA Abi activity. Additionally, ΦM1 escaped a heterologous type III TA system (TenpINPl) from Photorhabdus luminescens (reconstituted in P. atrosepticum) through mutations in the same protein, M1-23. The mechanistic action of M1-23 is currently unknown, but further analysis of this protein may provide insights into the mode of activation of both systems.IMPORTANCE Bacteriophages, the viral predators of bacteria, are the most abundant biological entities and are important factors in driving bacterial evolution. In order to survive infection by these viruses, bacteria have evolved numerous antiphage mechanisms. Many of the studies involved in understanding these interactions have led to the discovery of biotechnological and gene-editing tools, most notably restriction enzymes and more recently the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Abortive infection is another such antiphage mechanism that warrants further investigation. It is unique in that activation of the system leads to the premature death of the infected cells. As bacteria infected with the virus are destined to die, undergoing precocious suicide prevents the release of progeny phage and protects the rest of the bacterial population. This altruistic suicide can be caused by type III toxin-antitoxin systems, and understanding the activation mechanisms involved will provide deeper insight into the abortive infection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.