Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO, and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.
Abstract. Delhi, India, routinely experiences some of the world's highest urban particulate matter concentrations. We established the Delhi Aerosol Supersite study to provide long-term characterization of the ambient submicron aerosol composition in Delhi. Here we report on 1.25 years of highly time-resolved speciated submicron particulate matter (PM1) data, including black carbon (BC) and nonrefractory PM1 (NR-PM1), which we combine to develop a composition-based estimate of PM1 (“C-PM1” = BC + NR-PM1) concentrations. We observed marked seasonal and diurnal variability in the concentration and composition of PM1 owing to the interactions of sources and atmospheric processes. Winter was the most polluted period of the year, with average C-PM1 mass concentrations of ∼210 µg m−3. The monsoon was hot and rainy, consequently making it the least polluted (C-PM1 ∼50 µg m−3) period. Organics constituted more than half of the C-PM1 for all seasons and times of day. While ammonium, chloride, and nitrate each were ∼10 % of the C-PM1 for the cooler months, BC and sulfate contributed ∼5 % each. For the warmer periods, the fractional contribution of BC and sulfate to C-PM1 increased, and the chloride contribution decreased to less than 2 %. The seasonal and diurnal variation in absolute mass loadings were generally consistent with changes in ventilation coefficients, with higher concentrations for periods with unfavorable meteorology – low planetary boundary layer height and low wind speeds. However, the variation in C-PM1 composition was influenced by temporally varying sources, photochemistry, and gas–particle partitioning. During cool periods when wind was from the northwest, episodic hourly averaged chloride concentrations reached 50–100 µg m−3, ranking among the highest chloride concentrations reported anywhere in the world. We estimated the contribution of primary emissions and secondary processes to Delhi's submicron aerosol. Secondary species contributed almost 50 %–70 % of Delhi's C-PM1 mass for the winter and spring months and up to 60 %–80 % for the warmer summer and monsoon months. For the cooler months that had the highest C-PM1 concentrations, the nighttime sources were skewed towards primary sources, while the daytime C-PM1 was dominated by secondary species. Overall, these findings point to the important effects of both primary emissions and more regional atmospheric chemistry on influencing the extreme particle concentrations that impact the Delhi megacity region. Future air quality strategies considering Delhi's situation in both a regional and local context will be more effective than policies targeting only local, primary air pollutants.
Air pollution measurements collected through systematic mobile monitoring campaigns can provide outdoor concentration data at high spatial resolution. We explore approaches to minimize data requirements for mapping a city's air quality using mobile monitors with "data-only" versus predictive modeling approaches. We equipped two Google Street View cars with 1-Hz instruments to collect nitric oxide (NO) and black carbon (BC) measurements in Oakland, CA. We explore two strategies for efficiently mapping spatial air quality patterns through Monte Carlo analyses. First, we explore a "data-only" approach where we attempt to minimize the number of repeated visits needed to reliably estimate concentrations for all roads. Second, we combine our data with a land use regression-kriging (LUR-K) model to predict at unobserved locations; here, measurements from only a subset of roads or repeat visits are considered. Although LUR-K models did not capture the full variability of onroad concentrations, models trained with minimal data consistently captured important covariates and general spatial air pollution trends, with cross-validation R 2 for log-transformed NO and BC of 0.65 and 0.43. Data-only mapping performed poorly with few (1−2) repeated drives but obtained better cross-validation R 2 than the LUR-K approach within 4 to 8 repeated drive days per road segment.
<p><strong>Abstract.</strong> Delhi, India, is the second most populated city in the world and routinely experiences some of the highest particulate matter concentrations of any megacity on the planet, posing acute challenges to public health (World Health Organization, 2018). However, the current understanding of the sources and dynamics of PM pollution in Delhi is limited. Measurements at the Delhi Aerosol Supersite (DAS) provide a long-term chemical characterization of ambient submicron aerosol in Delhi, with near-continuous online measurements of aerosol composition. Here we report on source apportionment based on positive matrix factorization (PMF), conducted on 15 months of highly time-resolved speciated submicron non-refractory PM1 (NRPM1) between January 2017 and March 2018. We report on seasonal variability across four seasons of 2017 and interannual variability using data from the two winters and springs of 2017 and 2018. We show that a modified tracer-based organic component analysis provides an opportunity for a real-time source apportionment approach for organics in Delhi. Thermodynamic modeling allows estimation of the importance of ventilation coefficient (VC) and temperature in controlling primary and secondary organic aerosol. We also find that primary aerosol dominates severe air pollution episodes.</p>
Abstract. The Indian national capital, Delhi, routinely experiences some of the world's highest urban particulate matter concentrations. While fine particulate matter (PM2.5) mass concentrations in Delhi are at least an order of magnitude higher than in many western cities, the particle number (PN) concentrations are not similarly elevated. Here we report on 1.25 years of highly time-resolved particle size distribution (PSD) data in the size range of 12–560 nm. We observed that the large number of accumulation mode particles – that constitute most of the PM2.5 mass – also contributed substantially to the PN concentrations. The ultrafine particle (UFP; Dp<100 nm) fraction of PNs was higher during the traffic rush hours and for daytimes of warmer seasons, which is consistent with traffic and nucleation events being major sources of urban UFPs. UFP concentrations were found to be relatively lower during periods with some of the highest mass concentrations. Calculations based on measured PSDs and coagulation theory suggest UFP concentrations are suppressed by a rapid coagulation sink during polluted periods when large concentrations of particles in the accumulation mode result in high surface area concentrations. A smaller accumulation mode for warmer months results in an increased UFP fraction, likely owing to a comparatively smaller coagulation sink. We also see evidence suggestive of nucleation which may also contribute to the increased UFP proportions during the warmer seasons. Even though coagulation does not affect mass concentrations, it can significantly govern PN levels with important health and policy implications. Implications of a strong accumulation mode coagulation sink for future air quality control efforts in Delhi are that a reduction in mass concentration, especially in winter, may not produce a proportional reduction in PN concentrations. Strategies that only target accumulation mode particles (which constitute much of the fine PM2.5 mass) may even lead to an increase in the UFP concentrations as the coagulation sink decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.