Infrastructure as a Service (IaaS) cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers' data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA) is applied; otherwise Autoregressive Neural Network (AR-NN) is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC) values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC) value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.
Wireless Sensor Networks (WSNs) consist of a spatially distributed set of autonomous connected sensor nodes. The deployed sensor nodes are extensively used for sensing and monitoring for environmental surveillance, military operations, transportation monitoring, and healthcare monitoring. The sensor nodes in these networks have limited resources in terms of battery, storage, and processing. In some scenarios, the sensor nodes are deployed closer to the base station and responsible to forward their own and neighbor nodes’ data towards the base station and depleted energy. This issue is called a hotspot in the network. Hotspot issues mainly appear in those locations where traffic load is more on the sensor nodes. The dynamic and unequal clustering techniques have been used and mitigate the hotspot issues. However, with few benefits, these solutions have suffered from coverage overhead, network connection issues, unbalanced energy utilization among the sink nodes, and network stability issues. In this paper, a comprehensive review of various equal clustering, unequal clustering, and hybrid clustering approaches with their clustering attributes is presented to mitigate hotspot issues in heterogeneous WSNs by using various parameters such as cluster head selection, number of clusters, zone formation, transmission, and routing parameters. This review provides a detailed platform for new researchers to explore the new and novel solutions to solve the hotspot issues in these networks.
Use of cloud resources has increased with the increasing trend of organizations and governments towards cloud adaptation. This increase in cloud resource usage, leads to enormous amounts of energy consumption by cloud data center servers. Energy can be conserved in a cloud server by demand-based scaling of resources. But reactive scaling may lead to excessive scaling. That, in turn, results in enormous energy consumption by useless scale up and scale down. The scaling granularity can also result in excessive scaling of the resource. Without a proper mechanism for estimating cloud resource usage may lead to significant scaling overheads. To overcome, such inefficiencies, we present Cartesian genetic programming based neural network for resource estimation and a rule-based scaling system for IaaS cloud server. Our system consists of a resource monitor, a resource estimator and a scaling mechanism. The resource monitor takes resource utilizations and feeds to the estimator for efficient estimation of resources. The scaling system uses the resource estimator's output for scaling the resource with the granularity of a CPU core. The proposed method has been trained and tested with real traces of Bitbrains data center, producing promising results in real-time. It has shown better prediction accuracy and energy efficiency than predictive scaling systems from literature. INDEX TERMS Artificial neural networks, auto-scaling, cartesian genetic programming, energy efficiency, evolutionary computation, green computing, infrastructure as service, workload prediction, cloud server.
Wireless communication systems have evolved and offered more smart and advanced systems like ad hoc and sensor-based infrastructure fewer networks. These networks are evaluated with two fundamental parameters including data rate and spectral efficiency. To achieve a high data rate and robust wireless communication, the most significant task is channel equalization at the receiver side. The transmitted data symbols when passing through the wireless channel suffer from various types of impairments, such as fading, Doppler shifts, and Intersymbol Interference (ISI), and degraded the overall network performance. To mitigate channel-related impairments, many channel equalization algorithms have been proposed for communication systems. The channel equalization problem can also be solved as a classification problem by using Machine Learning (ML) methods. In this paper, channel equalization is performed by using ML techniques in terms of Bit Error Rate (BER) analysis and comparison. Radial Basis Functions (RBFs), Multilayer Perceptron (MLP), Support Vector Machines (SVM), Functional Link Artificial Neural Network (FLANN), Long-Short Term Memory (LSTM), and Polynomial-based Neural Networks (NNs) are adopted for channel equalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.