Abstract:In a laboratory study, indica and japonica rice (Oryza sativa L.) seeds were exposed to thermal hardening (heating followed by chilling followed by heating; chilling followed by heating followed by chilling; heating followed by chilling or chilling followed by heating). In indica rice, heating followed by chilling followed by heating resulted in decreased mean germination time, time to start germination, electrical conductivity of seed leachates, and time to 50% germination, as well as increased germination index, energy of germination, radicle and plumule length, root length, root/shoot ratio, root fresh and dry weight, radicle and plumule growth rate, and shoot fresh weight. In japonica rice, chilling followed by heating followed by chilling performed better than all other treatments, including control.
The optimum temperature for maize germination is between 25 and 28 °C. Poor and erratic germination at suboptimal temperature is the most important hindrance in its early sowing. This study was conducted to induce chilling tolerance in hybrid maize (Zea mays L.) by seed priming with salicylic acid (SA) and to unravel the background biochemical basis. For seed priming, maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 ppm (mg l−1) aerated solutions of SA for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Performance of maize seedlings was hampered under chilling stress. But seed priming with SA improved the seedling emergence, root and shoot length, seedling fresh and dry weights, and leaf and root score considerably compared with control both at optimal and chilling temperatures. However, priming in 50 mg l−1 SA solution was more effective, followed by priming in 100 mg l−1 SA solution. Seed priming with SA improved the chilling tolerance in hybrid maize mainly by the activation of antioxidants (including catalase, superoxide dismutase and ascorbate peroxidase). Moreover, maintenance of high tissue water contents and reduced membrane permeability also contributed towards chilling tolerance.
Transplanting is the major method of rice cultivation in the world, in which seedlings are raised in nursery and then transplanted into well puddle and prepared fields. The traditional nursery sowing method is tedious and produces week seedlings that reduce the final yield due to high mortality. The potential of seed priming to improve the nursery seedlings and thus the transplanted rice was evaluated in the present study. The experiment was conducted in the rice growing area (31. 45°N, 73.26°E, and 193 m) of Pakistan, during 2004Pakistan, during -2005. Seed priming tools employed during the investigation included traditional soaking, hydropriming for 48 h, osmohardening with KCl or CaCl 2 (Y s -1.25 MPa) for 24 h (one cycle), 10 ppm ascorbate for 48 h or seed hardening for 24 h. Priming improved the initial seedling vigor and resulted in improved growth, yield and quality of transplanted fine rice while traditional soaking behaved similar to that of untreated control. Osmohardening with CaCl 2 resulted in the best performance, followed by hardening, ascorbate priming and osmohardening with KCl. Osmohardening with CaCl 2 produced 3.75 t ha -1 (control: 2.87 t ha -1 ) kernel yield, 11.40 t ha -1 (control: 10.03 t ha -1 ) straw yield and 24.57% (control: 22.27%) harvest index. The improved yield was attributed due to increase in the number of fertile tillers. Significant positive correlation was found between mean emergence time of nursery seedlings and kernel yield, nursery seedling dry weight and kernel yield, fertile tillers and kernel yield, and leaf area duration and kernel yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.