Vanadium and magnesium co-doped LiNbO 3 (LN) crystals were grown, and their photorefractive properties were studied in the visible spectral region. At 488 nm the shortest response time of 80 ms was achieved for an LN crystal co-doped with 0.1 mol% V 2 O 5 and 6.0 mol% MgO, which is the more rapid than other reported doped LN crystals in the same wavelength region. The sensitivity of this crystal reaches 17 cm J −1 with an adequate diffraction efficiency of 4.0%. A schematic diagram for energy level is proposed and discussed. Through the analysis of defect structure and absorption spectra, we found that the change of the vanadium ions occupancy from Li sites to Nb sites is responsible for significant shortening the response time. The rapid response of vanadium and magnesium co-doped LN crystal can play an excellent role in the field of dynamic holography and practical holographic 3D-storage applications.
Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg2+, Sc3+, and Zr4+ doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.
We mainly investigated the effect of the valence state of photorefractive resistant elements on the photorefractive properties of codoped crystals, taking the Zn and Mo codoped LiNbO3 (LN:Mo,Zn) crystal as an example. Especially, the response time and photorefractive sensitivity of 7.2 mol% Zn and 0.5 mol% Mo codoped with LiNbO3 (LN:Mo,Zn7.2) crystal are 0.65 s and 4.35 cm/J at 442 nm, respectively. The photorefractive properties of the LN:Mo,Zn crystal are similar to the Mg and Mo codoped LiNbO3 crystal, which are better than the Zr and Mo codoped LiNbO3 crystal. The results show that the valence state of photorefractive resistant ions is an important factor for the photorefractive properties of codoped crystals and that the LN:Mo,Zn7.2 crystal is another potential material with fast response to holographic storage.
Nitrogen-doped lithium niobate (LiNbO3:N) thin films were successfully fabricated on a Si-substrate using a nitrogen plasma beam supplied through a radio-frequency plasma apparatus as a dopant source via a pulsed laser deposition (PLD). The films were then characterized using X-Ray Diffraction (XRD) as polycrystalline with the predominant orientations of (012) and (104). The perfect surface appearance of the film was investigated by atomic force microscopy and Hall-effect measurements revealed a rare p-type conductivity in the LiNbO3:N thin film. The hole concentration was 7.31 × 1015 cm−3 with a field-effect mobility of 266 cm2V−1s−1. X-ray Photoelectron Spectroscopy (XPS) indicated that the atom content of nitrogen was 0.87%; N atoms were probably substituted for O sites, which contributed to the p-type conductivity. The realization of p-type LiNbO3:N thin films grown on the Si substrate lead to improvements in the manufacturing of novel optoelectronic devices.
Two-dimensional van der Waals heterostructures (vdWHs) with tunable band alignment have the potential to be benignant in the development of minimal multi-functional and controllable electronics, but they have received little attention thus far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.