Zika virus (ZikV) has emerged as a potential threat to human health worldwide. A member of the Flaviviridae, ZikV is transmitted to humans by mosquitoes. It is related to other pathogenic vector-borne flaviviruses including dengue, West Nile and Japanese encephalitis viruses, but produces a comparatively mild disease in humans. As a result of its epidemic outbreak and the lack of potential medication, there is a need for improved vaccine/drugs. Computational techniques will provide further information about this virus. Comparative analysis of ZikV genomes should lead to the identification of the core characteristics that define a virus family, as well as its unique properties, while phylogenetic analysis will show the evolutionary relationships and provide clues about the protein's ancestry. Envelope glycoprotein of ZikV was obtained from a protein database and the most immunogenic epitope for T cells and B cells involved in cell-mediated immunity, whereas B cells are primarily responsible for humoral immunity. We mainly focused on MHC class I potential peptides. YRIMLSVHG, VLIFLSTAV and MMLELDPPF, GLDFSDLYY are the most potent peptides predicted as epitopes for CD4 and CD8 T cells, respectively, whereas MMLELDPPF and GLDFSDLYY had the highest pMHC-I immunogenicity score and these are further tested for interaction against the HLA molecules, using in silico docking techniques to verify the binding cleft epitope. However, this is an introductory approach to design an epitope-based peptide vaccine against ZikV; we hope that this model will be helpful in designing and predicting novel vaccine candidates.
plants produce an array of peptides as part of their innate defense mechanism against pathogens. the potential use of these peptides for various therapeutic purposes is increasing per diem. in order to excel in this research, the community requires web repositories that provide reliable and accurate information about these phyto-peptides. this work is an attempt to bridge the gaps in plant-based peptide research. PlantPepDB is a manually curated database that consists of 3848 plant-derived peptides among which 2821 are experimentally validated at the protein level, 458 have experimental evidence at the transcript level, 530 are predicted and only 39 peptides are inferred from homology. incorporation of physicochemical properties and tertiary structure into plantpepDB will help the users to study the therapeutic potential of a peptide, thus, debuts as a powerful resource for therapeutic research. Different options like Simple, Advanced, PhysicoChem and AA composition search along with browsing utilities are provided in the database for the users to execute dynamic search and retrieve the desired data. interestingly, many peptides that were considered to possess only a single property were found to exhibit multiple properties after careful curation and merging the duplicate data that was collected from published literature and already available databases. Overall, PlantPepDB is the first database comprising detailed analysis and comprehensive information of phyto-peptides from a broad functional range which will be useful for peptide-based applied research. plantpepDB is freely available at http://www.nipgr.ac.in/plantpepDB/.The past decade has seen exceptional growth in peptide-based therapeutic research. Currently, over 60 peptide drugs are approved in the market 1 and more than 200 peptide drugs are in different clinical trial phases 2 . These numbers clearly denote the applicability of peptide-based therapeutics in the field of drug discovery 3 . Higher as well as the lower group of plants possess a broad range of defense mechanisms to combat chemical, physical and biological stress conditions. Plant-derived peptides are one of their defensive approaches. Bioactive plant peptides are an underexplored domain in the field of proteomics and peptidomics 4 . Plenty of bioactive peptides, including toxins and venoms that act upon intriguing molecular targets, have been identified in all plant taxonomic groups. Plant-derived peptides possess numerous activities like antifungal, antibacterial, antiviral, anticancer, antihypertensive, immune system related, antiparasitic, antifeedant, insecticidal, etc., that can be utilized for many therapeutic and biological applications. Over the last few years, peptides emerged as an alternative for chemical drugs due to the change in drug development and treatment paradigms 1 . Therapeutic peptides are advantageous over proteins or antibodies as they have high target specificity and selectivity as well as easy to synthesize 5 , and are less toxic. Plant peptides may be a starting p...
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.