Aircraft wings are designed with very low factor of safety to keep the aircraft weight minimum. Thus, for safe design of wings, stress analysis should be carried out under accurately estimated aerodynamic loads and this can be achieved only through coupled fluid-structure analysis. Moreover, modern aircraft wings are made of laminated composite structures and thus the purpose of this study is to employ ANSYS coupled fluid-structure analysis to find the best layup of composite wing of an aircraft that results in higher specific strength and specific stiffness. Firstly, Computational Fluid Dynamics (CFD) analysis has been carried out to find the actual aerodynamic load which is the pressure distribution around a three-dimensional wing. Then, this pressure distribution from CFD was used as a load input for detailed static structural analysis of the wing. Initially, strength and stiffness of an isotropic wing is evaluated and then the material of the wing was changed to composite laminates to achieve better structural performance with higher strength and stiffness to weight ratio. Stress analysis was carried out for different layups to predict the optimum layup that results in high strength and stiffness coupled with the least weight and it was found that the wing made of symmetric cross-ply laminate performs the best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.