There is substantial literature dealing with fixed parameter algorithms for the dominating set problem on various families of graphs. In this paper, we give a k O(dk) n time algorithm for finding a dominating set of size at most k in a d-degenerated graph with n vertices. This proves that the dominating set problem is fixed-parameter tractable for degenerated graphs. For graphs that do not contain K h as a topological minor, we give an improved algorithm for the problem with running time (O(h)) hk n. For graphs which are K h -minor-free, the running time is further reduced to (O(log h)) hk/2 n. Fixed-parameter tractable algorithms that are linear in the number of vertices of the graph were previously known only for planar graphs.For the families of graphs discussed above, the problem of finding an induced cycle of a given length is also addressed. For every fixed H and k, we show that if an H -minor-free graph G with n vertices contains an induced cycle of size k, then such a cycle can be found in O(n) expected time as well as in O(n log n) worst-case time. Some results are stated concerning the (im)possibility of establishing linear time algorithms for the more general family of degenerated graphs.
A graph G is k-choosable if for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). We consider the complexity of deciding whether a given graph is k-choosable for some constant k. In particular, it is shown that deciding whether a given planar graph is 4-choosable is NP-hard, and so is the problem of deciding whether a given planar triangle-free graph is 3-choosable. We also obtain simple constructions of a planar graph which is not 4-choosable and a planar triangle-free graph which is not 3-choosable.
Abstract. The construction of perfect hash functions is a well-studied topic. In this paper, this concept is generalized with the following definition. We say that a family of functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions if for every S ⊆ [n], |S| = k, the number of functions that are 1-1 on S is between T /δ and δT for some constant T > 0. The standard definition of a family of perfect hash functions requires that there will be at least one function that is 1-1 on S, for each S of size k. In the new notion of balanced families, we require the number of 1-1 functions to be almost the same (taking δ to be close to 1) for every such S. Our main result is that for any constant δ > 1, a δ-balanced (n, k)-family of perfect hash functions of size 2 O(k log log k) log n can be constructed in time 2 O(k log log k) n log n. Using the technique of color-coding we can apply our explicit constructions to devise approximation algorithms for various counting problems in graphs. In particular, we exhibit a deterministic polynomial time algorithm for approximating both the number of simple paths of length k and the number of simple cycles of size k for any k ≤ O( log n log log log n ) in a graph with n vertices. The approximation is up to any fixed desirable relative error.
Abstract. The construction of perfect hash functions is a well-studied topic. In this paper, this concept is generalized with the following definition. We say that a family of functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions if for every S ⊆ [n], |S| = k, the number of functions that are 1-1 on S is between T /δ and δT for some constant T > 0. The standard definition of a family of perfect hash functions requires that there will be at least one function that is 1-1 on S, for each S of size k. In the new notion of balanced families, we require the number of 1-1 functions to be almost the same (taking δ to be close to 1) for every such S. Our main result is that for any constant δ > 1, a δ-balanced (n, k)-family of perfect hash functions of size 2 O(k log log k) log n can be constructed in time 2 O(k log log k) n log n. Using the technique of color-coding we can apply our explicit constructions to devise approximation algorithms for various counting problems in graphs. In particular, we exhibit a deterministic polynomial time algorithm for approximating both the number of simple paths of length k and the number of simple cycles of size k for any k ≤ O( log n log log log n ) in a graph with n vertices. The approximation is up to any fixed desirable relative error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.