Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft.
The state of a collection of phase-locked oscillators is determined by a single phase variable or cyclic coordinate. This paper presents a computational method, Phaser, for estimating the phase of phase-locked oscillators from limited amounts of multivariate data in the presence of noise and measurement errors. Measurements are assumed to be a collection of multidimensional time series. Each series consists of several cycles of the same or similar systems. The oscillators within each system are not assumed to be identical. Using measurements of the noise covariance for the multivariate input, data from the individual oscillators in the system are combined to reduce the variance of phase estimates for the whole system. The efficacy of the algorithm is demonstrated on experimental and model data from biomechanics of cockroach running and on simulated oscillators with varying levels of noise.
Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics.
SUMMARY In nature, cockroaches run rapidly over complex terrain such as leaf litter. These substrates are rarely rigid, and are frequently very compliant. Whether and how compliant surfaces change the dynamics of rapid insect locomotion has not been investigated to date largely due to experimental limitations. We tested the hypothesis that a running insect can maintain average forward speed over an extremely soft elastic surface (10 N m−1) equal to 2/3 of its virtual leg stiffness (15 N m−1). Cockroaches Blaberus discoidalis were able to maintain forward speed (mean ± s.e.m., 37.2±0.6 cm s−1 rigid surface versus 38.0±0.7 cm s−1 elastic surface; repeated-measures ANOVA, P=0.45). Step frequency was unchanged (24.5±0.6 steps s−1 rigid surface versus 24.7±0.4 steps s−1 elastic surface; P=0.54). To uncover the mechanism, we measured the animal's centre of mass (COM) dynamics using a novel accelerometer backpack, attached very near the COM. Vertical acceleration of the COM on the elastic surface had a smaller peak-to-peak amplitude (11.50±0.33 m s−2, rigid versus 7.7±0.14 m s−2, elastic; P=0.04). The observed change in COM acceleration over an elastic surface required no change in effective stiffness when duty factor and ground stiffness were taken into account. Lowering of the COM towards the elastic surface caused the swing legs to land earlier, increasing the period of double support. A feedforward control model was consistent with the experimental results and provided one plausible, simple explanation of the mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.