The Electrocardiogram (ECG) is performed routinely by medical personell to identify structural, functional and electrical cardiac events. Many attempts were made to automate this task using machine learning algorithms. Numerous supervised learning algorithms were proposed, requiring manual feature extraction. Lately, deep neural networks were also proposed for this task for reaching state-of-the-art results. The ECG signal conveys the specific electrical cardiac activity of each subject thus extreme variations are observed between patients. These variations and the low amount of training data available for each arrhythmia are challenging for deep learning algorithms, and impede generalization. In this work, the use of generative adversarial networks is studied for the synthesis of ECG signals, which can then be used as additional training data to improve the classifier performance. Empirical results prove that the generated signals significantly improve ECG classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.