Farnesol (FAR) is a sesquiterpene molecule with high lipophilicity that has antibacterial and other pharmacological properties along with broad nutritional values with high commercial values. Although having potential, FAR stability behavior and degradation kinetics are not available in the literature. Hence, it is very essential to develop a simple, rapid, accurate, precise, robust, cheap UHPLC-DAD method for FAR. It was also proposed to study mechanistic insights into FAR under different degradation conditions. Therefore, we hypothesized to do systematic stability studies along with degradation kinetic and accelerated stability studies. The developed method was validated. FAR was studied for stress studies, degradation kinetics and ADMET prediction of degradants. Degradation products were characterized using LC-QTOF-ESI-MS. Developed method consists of an isocratic mobile phase with a wavelength of 215 nm. The percent recoveries for FAR were observed within the acceptance limit of 98–102%. The eight major degradation products were formed during stress studies. FAR follows first-order degradation kinetics. FAR and all degradants were found to have more than 75% good human oral absorption, and are non-toxic. FAR UHPLC-DAD method was developed, validated and performed stability studies to know the possible degradation pattern along with degradation kinetic studies.
Mobile devices act as hosts and routers in Mobile Ad-hoc Networks with no designed infrastructure. The enormous increase in MANETs provides the evolution of various solutions from wired to wireless to Mobile Ad-hoc Networks. The security has been the key in any communication implementation. The security implementation in MANET is a challenging and not considered much for research. In this work we attempt to build a novel platform for the security solutions for MANET architecture. We propose the architectural reference model for MANET, which provides scope for researchers to enhance and contribute to this research work. We discuss about the traditional IPSec and propose transformed IPSec in MANET environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.