The Kyoto protocol emphasized the need of replacement of HFC refrigerant due to their high GWP values that causes pollution in the environment. So in this paper the refrigerants R1234yf, R152a and HFOs/HFCs mixtures of R134a/R152a/R1234yf such as ARM42 (in the ratio of 8.5/14 /77.5 by mass), ARM42a (in the ratio of 7/11/82 by mass) with a view of replacement of the refrigerant HFC-134a in a domestic refrigerator were analyzed theoretically. Volumetric cooling capacity, compressor discharge temperature, coefficient of performance, compressor energy consumption and refrigeration capacity are the main parameters to estimate the performance of the refrigerator. The results are revealed that HFC-152a had gave a superior performance as compared to HFC-134a in terms of COP and equal cooling and volumetric cooling capacities. However, the refrigerant HFC-152a was flammable and runs with high compressor outlet temperature which may restrict its usage. The HFO refrigerant R1234yf showed an almost equal volumetric cooling capacity, compressor energy consumption, refrigerating effect and COP when compared with HFC-134a. Among the refrigerants ARM42 and ARM42a, the refrigerant ARM42a was selected as a good alternative for HFC-134a because the Volumetric cooling capacity and COP of ARM42a were almost equal to HFC-134a. Therefore ARM42a had better choice of direct substitute to HFC-134a in a domestic refrigerator when the corresponding safety requirements are adopted. So on overall comparison of every property of refrigerants we can conclude that R1234yf can be treated as best alternative to HFC-134a in a domestic refrigerator.
The usage of refrigerators and air conditioners are more prevalent in a domestic environment now-a-days. Improving the efficiency of these devices can be considered as an important step to reduce their energy consumption. Currently, in India, most refrigerators work with HFC-134a as a refrigerant. The GWP value of HFC-134a is around 1430.Therefore, there is a greater demand to replace HFCs with low GWP refrigerants. In this document, the comparison of the performance of a refrigerator without fluid intake heat exchanger (LSHX) with low GWP refrigerants and the results are compared with HFC-134a performed. The low GWP refrigerants used in the test are: hydrocarbon-propane (R290) and isobutane (R600a), the pure hydrocarbons are HFC-134a and HFC-152a and the refrigerants are hydrofluoroolefins 1234yf and 1234ze (E). All have been tested without making changes in the system. The entire examination was carried out in the same system under the same working conditions.
Now a days R134a can be used in domestic refrigerators and in air conditioning of automobiles. As per Kyoto protocol the usage of R134a is restricted due to their higher GWP value. The GWP value of this refrigerant is around 1430. So in this article, thermodynamic analysis of HFC-152a, HFO refrigerants-1234ze(E) and 1234yf was done in a household refrigeration system as direct substitute to HFC-134a.The performance of the household refrigerator was compared in terms of outlet temperature of the compressor, volumetric cooling capacity (VCC), refrigeration effect, work done by the compressor and coefficient of performance (COP). The entire analysis is carried out at various operating conditions of condenser and evaporator temperatures i.e. condensation temperature of 25°C,35°C & 45°C and evaporating temperatures ranging between −20°C to 10°C.From the theoretical results, it can be concluded that R1234yf can be used as a direct substitute to R134a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.