Hypertrophic cardiomyopathy (HCM) mutations in β-cardiac myosin and myosin binding protein-C (MyBP-C) lead to hypercontractility of the heart, an early hallmark of HCM. We show that hypercontractility caused by the HCM-causing mutation R663H cannot be explained by changes in fundamental myosin contractile parameters, much like the HCM-causing mutation R403Q. Using enzymatic assays with purified human β-cardiac myosin, we provide evidence that both mutations cause hypercontractility by increasing the number of functionally accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of MyBP-C. Furthermore, addition of C0-C7 decreases the wild-type myosin basal ATPase single turnover rate, while the mutants do not show a similar reduction. These data suggest that a primary mechanism of action for these mutations is to increase the number of myosin heads functionally available for interaction with actin, which could contribute to hypercontractility.
BackgroundKrishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is ‘Tulsi’ (or ‘Tulasi’ or ‘Thulasi’) and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties.ResultsThe pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry.ConclusionsThe availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0562-x) contains supplementary material, which is available to authorized users.
Fenugreek (Trigonella foenum-graecum L.) is a self-pollinated leguminous crop belonging to the Fabaceae family. It is a multipurpose crop used as herb, spice, vegetable and forage. It is a traditional medicinal plant in India attributed with several nutritional and medicinal properties including antidiabetic and anticancer. We have performed a combined transcriptome assembly from RNA sequencing data derived from leaf, stem and root tissues. Around 209,831 transcripts were deciphered from the assembly of 92% completeness and an N50 of 1382 bases. Whilst secondary metabolites of medicinal value, such as trigonelline, diosgenin, 4-hydroxyisoleucine and quercetin, are distributed in several tissues, we report transcripts that bear sequence signatures of enzymes involved in the biosynthesis of such metabolites and are highly expressed in leaves, stem and roots. One of the antidiabetic alkaloid, trigonelline and its biosynthesising enzyme, is highly abundant in leaves. These findings are of value to nutritional and the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.