Purpose The purpose of this paper is to investigate the acoustic properties of needle-punched nonwovens produced of bamboo, banana and hemp fibers blended with polyester (PET) and polypropylene (PP) as they are supportive enough to minimize sound transmission inside the automobiles. Design/methodology/approach Textile materials like bamboo, banana and hemp blended with PET and PP in the ratio of 35:35:30 were applied to make the web. The needle-punching technique was applied to each web for three times to form a full nonwoven textile composite. The concept of PET/PP blend with natural fibers was to enhance the consistency and thermoform propensity of the composites. When nonwoven textile composites were placed in between a sound source and a receiver, they absorbed annoying sound by dissolving sound wave energy. Sound absorption coefficient was measured by the impedance tube method as per ASTM C384 Standard. Bamboo/PET/PP composite showed the highest absorption coefficient in most of the frequencies. Findings Physical and comfort properties were tested for the composites and it was noticed that bamboo/PET/PP composites with its compressed structure showed a better stiffness value, lesser thermal conductivity, lesser air permeability, better absorption coefficient and highest sound transmission loss compared to other two composites. At 840 Hz, the absorption coefficient of bamboo/PET/PP remained in satisfactory level but it was inferior by 20 percent in banana/PET/PP. Conversely at more frequencies like 1,680 Hz, there was a decrease from the target level in all the nonwovens composites, which could be enhanced by raising the thickness of the nonwovens, and all these properties of bamboo/PET/PP were considered appropriate for controlling noise inside the vehicles. Practical implications This research will provide facilities to decrease noise inside the vehicles. It will improve the apparent value of the automobiles to the traveler and also provide a sensible goodwill to the manufacturer. Originality/value This research will open several ways for the development of different nonwoven composites, particularly for the sound absorption and will open possible ways for the scholars to further study in this field.
Purpose The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The findings could contribute to ease spandex production and to optimize its property of elasticity. Stretch or a super stretch property is generally desirable, as it can increase the comfort level of those who wear it. In this experiment, the difficulties which were identified while manufacturing cotton spandex woven fabric resolved after identification. Design/methodology/approach In this experiment, three types of cotton spandex woven fabrics, with different composition and constructions, were used to find out their elastic properties. Temperature ranging from 160°C to 200°C with the machine speed of 20 to 26 MPM (meter per minute) was applied with an adjusted industrial setting with the facilities of a stenter machine to optimize the properties of cotton spandex woven fabric. Findings The findings establish that the temperature treatment closely compacted the elastic portions with cotton fibers, giving stability to the spandex yarn, which as a result, influenced cotton spandex woven fabric’s elastic properties, namely, stretch, growth and recovery. The consequences of temperature on cotton spandex yarns were assessed using a microscope, and the results were subsequently analyzed. Research limitations/implications Because of the poor facilities in testing laboratory, only few tests with microscopic evaluation were conducted to assess the elastic performances of cotton spandex woven fabric. Practical implications It is a practice-based research, and the findings could be beneficial to personnel in the textile industry, who are responsible for the manufacturing of cotton spandex woven fabric. Social implications This research could enhance the wearer’s satisfaction, with some comfort elastic properties, which can have a positive influence over spandex clothing industries. Originality/value This research establishes that heat setting had a progressive influence on the production of cotton spandex woven fabric and for the optimization of its elastic performances. This research opens a possible way for scholars to further study in this field.
A series of polyimide (PI)-clay-polydimethylsiloxane (PDMS) hybrid films were successfully prepared by using two different reactions, a sol—gel reaction of diethoxydimethylsilane and imidization of polyamide acid (PAA) prepared from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA), in the presence of 2 wt% of organically modified montmorillonite. X-ray diffraction of the hybrid films indicated that the clay layers were exfoliated and dispersed into PI. Scanning electron microscopy was used to confirm the dispersion of PDMS and to measure the particle size of the PDMS. Thermogravimetric analysis, differential scanning calorimetry, viscoelastic analysis and stress— strain tests were used to evaluate the performance of the hybrid films. The addition of small amount of PDMS was found to overcome the brittle problem of PI-clay nanocomposites, and the PI-clay-PDMS hybrid showed excellent thermal and physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.