This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters’ size and yield was investigated. Au nanoclusters’ size and size uniformity were confirmed via transmission electron microscopy. In general, Au nanoclusters’ average diameter increased by increasing all source parameters, producing monodispersed nanoclusters of an average size range of 1.7 ± 0.1 nm to 9.1 ± 0.1 nm. Among all source parameters, inert gas flow rate exhibited a strong impact on nanoclusters’ average size, while sputtering discharge power showed great influence on Au nanoclusters’ yield. Results suggest that Au nanoclusters nucleate via a three-body collision mechanism and grow through a two-body collision mechanism, wherein the nanocluster embryos grow in size due to atomic condensation. Ultimately, the usefulness of the produced Au nanoclusters as catalysts for a vapor–liquid–solid technique was put to test to synthesize the phase change material germanium telluride nanowires.
This work demonstrates synthetic strategies for the incorporation of a synthesized pyrimidine glucagon-like peptide-1 (GLP-1) agonist into alginate-coated ZIF-8. The prepared pyrimidine GLP-1 agonist used for the treatment of diabetes type II, was trapped inside polymer coated ZIF-8. The encapsulation of the GLP-1 agonist was confirmed by UV-visible and FT-IR spectroscopies. Furthermore, the release kinetics of GLP-1 agonist drug from alginate-coated ZIF-8 were investigated in phosphate-buffered saline at 37 °C at pH 8 and 1.5. The alginate-coated ZIF-8 exhibited much faster drug release at basic pH than at pH 1.5, indicating the potential of the alginate-coated ZIF-8 system to overcome the fast degradation at acidic pH of the stomach and improve the drug’s activity. This study may open the way for the synthesis of new metal organic frameworks (MOFs) to enhance drug delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.