Therapeutic ultrasound waves are the main instruments used in many noninvasive clinical procedures. They are continuously transforming medical treatments through mechanical and thermal effects. To allow for effective and safe delivery of ultrasound waves, numerical modeling methods such as the Finite Difference Method (FDM) and the Finite Element Method (FEM) are used. However, modeling the acoustic wave equation can result in several computational complications. In this work, we study the accuracy of using Physics-Informed Neural Networks (PINNs) to solve the wave equation when applying different combinations of initial and boundary conditions (ICs and BCs) constraints. By exploiting the mesh-free nature of PINNs and their prediction speed, we specifically model the wave equation with a continuous time-dependent point source function. Four main models are designed and studied to monitor the effects of soft or hard constraints on the prediction accuracy and performance. The predicted solutions in all the models were compared to an FDM solution for prediction error estimation. The trials of this work reveal that the wave equation modeled by a PINN with soft IC and BC (soft–soft) constraints reflects the lowest prediction error among the four combinations of constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.