To reach in good plant stand, the life cycle of plants is faced with different critical stages such as uneven seed germination, poor and early seedling growth which ultimately results in low crop yield. It is well known that seed priming enhances germination, reduces seedling emergence time, and improves yield and yield contributing characters of plants. Seed priming is a physiological technique of seed hydration and drying to improve the metabolic process prior to germination to fasten the germination, seedling growth, and crop yield under normal, as well as different biotic and abiotic stress conditions. Many researchers have done a lot of research on seed priming in field crops to enhance the final yield. However, different priming methods and their application in field crops are poorly described. Therefore, this review paper discusses seed priming and its different methods and their application in field crops as well as future perspectives of seed priming.
The experiment was conducted to find out the effects of hydropriming on seed germination, seedling growth and yield of bitter. Two single factor experiments were conduced at the laboratory and field of Seed Science and Technology Department following completely randomized design with three replications and randomized complete block design with five replications, rspectively. The experiments comprised six soaking treatments viz. T0: untreated (control), T1: tap water (around 25º ± 2º C) for overnight, T2:cold water (12ºC) for 5 min, T3: cold water (12ºC) for 10min, T4:cold water (12ºC) for 15min, T5: hot water (45ºC) for 5 min and T6: hot water (45ºC) for 10min soaking. The highest germination (88.0%) was obtained from T5 treatment and the lowest germination (30.0%) was recorded in control treatment. It was also observed that T5 treatment exehibited superior performances in respect of most of the parameters studied in the laboratory as well as in fiield experiment as compeared to control treatment. In respect of fruit yield per plant, maximum number of fruits obtained from T5 treatment (16 fruits/plant) followed by T6 (14 fruit/plant), T1 (12 fruit/plant), T2 (12.0 fruit/plant), T3 (11.2 fruit/plant) and T4 (11.2 fruit/plant) and the minimum number of fruits per plant recorded from the control treatment (7.6). From the findings of these study it can be concluded that bitter gourd seeds soaked in hot water at 45ºC for 5 min could improve seed germination, expedite seedling growth and eventually increase the yield of fruit. J Bangladesh Agril Univ 17(3): 281–287, 2019
Salinity is a dominant obstacle to the proper germination of seeds, growth of seedlings, and, consequently, the production of crops. The priming of seeds with different treating agents can efficiently impart salinity tolerance. Kidney bean is a nutritious and popular vegetable crop in the world. Literature shows that salt stress negatively disturbs the germination and growth of kidney beans. In the present research, we investigated the potentiality of salicylic acid (SA) and hydrogen peroxide (H2O2) as priming and exogenous agents to alleviate the salinity-inhibited germination and growth of kidney beans. The seeds were pretreated with SA (1 mM and 2 mM) and H2O2 (0.1 mM and 0.15 mM) and soaked in normal tap water (hydro-priming) for 60 min. In addition, for the control experiment, untreated seeds were used. Finally, primed seeds were subjected to salt stress (150 mM NaCl). Our results exhibited that salt stress considerably lowered the percentage of germination (GP), germination index (GI), seed vigor index (SVI), shoot length (SL), root length (RL), shoot–root fresh and dry biomass, and plant growth. The results also exhibited that salt stress significantly decreased the relative water content (RWC) and photosynthetic pigments such as chlorophyll, carotenoids, lycopene, and beta-carotene contents. The SA- and H2O2- and hydro-priming stimulated the GP, GI, SL, RL, SVI, and seedling growth. Data also revealed that the supplementation of SA and H2O2 enhanced RWC and photosynthetic pigments. When compared to other treatments, pretreatment with 1 mM SA was determined to be comparatively more effective at imparting the salt tolerance of kidney beans. Overall, these results, via a heatmap and principal component analysis, uncovered that priming and exogenous applications of SA and H2O2 can improve salt tolerance and enhance germination and seedling characteristics of kidney beans.
Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance. Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.