Medical imaging is an indispensable tool in radiotherapy for dose planning, image guidance and treatment monitoring. Cone beam CT (CBCT) is a low dose imaging technique with high spatial resolution capability as a direct by-product of using flat-panel detectors. However, certain issues such as x-ray scatter, beam hardening and other artifacts limit its utility to the verification of patient positioning using image-guided radiotherapy.Methods and Materials: Dual-energy (DE)-CBCT has recently demonstrated promise as an improved tool for tumor visualization in benchtop applications. It has the potential to improve soft-tissue contrast and reduce artifacts caused by beam hardening and metal. In this review, the practical aspects of developing a DE-CBCT based clinical and technical workflow are presented based on existing DE-CBCT literature and concepts adapted from the well-established library of work in DE-CT. Furthermore, the potential applications of DE-CBCT on its future role in radiotherapy are discussed.Results and Conclusions: Based on current literature and an investigation of future applications, there is a clear potential for DE-CBCT technologies to be incorporated into radiotherapy. The applications of DE-CBCT include (but are not limited to): adaptive radiotherapy, brachytherapy, proton therapy, radiomics and theranostics.
Background. Chronic lung allograft dysfunction (CLAD) limits long-term survival after lung transplantation (LTx). Early detection or prediction of CLAD can lead to changes in patient management that, in turn, may improve prognosis. The purpose of this study was to investigate the utility of quantitative computed tomography (CT) lung density analysis in early prediction of CLAD. Methods. This retrospective cohort was drawn from all consecutive adult, first LTxs performed between 2006 and 2011. Post-transplant monitoring included scheduled surveillance bronchoscopies with concurrent pulmonaryfunctions tests and low-dose chest CT. Quantitative density metrics (QDM) derived from CT scans obtained at the time of 10%-19% decline in forced expiratory volume in 1 second (FEV1) were evaluated: 114 bilateral LTx recipients (66 with CLAD and 48 stable) and 23 single LTx recipients (11 with CLAD, 12 stable) were included in the analysis. Results. In both single and double LTx, at the time of 10%-19% drop in FEV1 from baseline, the QDM was higher in patients who developed CLAD within 3 years compared with those patients who remained stable for at least 3.5 years. The area under the receiver operating characteristic curve (AUC) was 0.89 for predicting CLAD in single LTx and 0.63 in bilateral LTx. A multipredictor AUC accounting for FEV1, QDM, presence of consolidation, and ground glass opacities increased the AUC to 0.74 in double LTx. Conclusions. QDM derived from a CT histogram at the time of early drop in FEV1 may allow prediction of CLAD in patients after single or double LTx.
An anthropomorphic phantom is a radiologically accurate, tissue realistic model of the human body that can be used for research into innovative imaging and interventional techniques, education simulation and calibration of medical imaging equipment. Currently available CT phantoms are appropriate tools for calibration of medical imaging equipment but have major disadvantages for research and educational simulation. They are expensive, lacking the realistic appearance and characteristics of anatomical organs when visualized during X-ray based image scanning. In addition, CT phantoms are not modular hence users are not able to remove specific organs from inside the phantom for research or training purposes. 3D printing technology has evolved and can be used to print anatomically accurate abdominal organs for a modular anthropomorphic mannequin to address limitations of existing phantoms. In this study, CT images from a clinical patient were used to 3D print the following organ shells: liver, kidneys, spleen, and large and small intestines. In addition, fatty tissue was made using modelling beeswax and musculature was modeled using liquid urethane rubber to match the radiological density of real tissue in CT Hounsfield Units at 120kVp. Similarly, all 3D printed organ shells were filled with an agar-based solution to mimic the radiological density of real tissue in CT Hounsfield Units at 120kVp. The mannequin has scope for applications in various aspects of medical imaging and education, allowing us to address key areas of clinical importance without the need for scanning patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.