CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infi ltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to defi ne a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBPmutant cells in tandem with promoting antitumor immunity.
Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV + TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8 + versus regulatory FoxP3 + T-cell ratios, elicited 2-to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.C ervical cancer is the second most common malignancy in women worldwide and continues to cause significant morbidity and mortality in the developing world, where screening and prevention programs remain rudimentary (1). The E6 and E7 oncoproteins of human papilloma virus (HPV) drive cervical cancer formation and are critical for maintenance of the transformed state (2). Beyond cervical cancer, HPV infection underlies 40% or greater of cases of oropharyngeal, anal, penile, vaginal, and vulvar cancers (3).The immunologically foreign nature of the HPV E6 and E7 proteins, coupled with their critical role in maintaining the oncogenic state, makes them ideal target antigens for therapeutic cancer vaccination. Whereas peptide-, protein-, viral-and DNAbased vaccines targeting E6 and E7 have been studied both preclinically and in clinical trials, most fail to induce regression of established HPV + tumors (4). To some degree, all of these vaccines succeed in eliciting peripheral E6/E7-specific T-cell responses; however, not all are proven to generate T cells capable of trafficking to the genital mucosa where cervical cancer develops. Whereas a number of these vaccines extend survival, few can induce regression of establishe...
Purpose To assess in a mouse model whether early or late components of glucose metabolism, exemplified by fluorine 18 (F) fluorodeoxyglucose (FDG) positron emission tomography (PET) and hyperpolarized carbon 13 (C)-pyruvate magnetic resonance (MR) spectroscopy, can serve as indicators of response in ovarian cancer to multityrosine kinase inhibitor pazopanib. Materials and Methods In this Animal Care and Use Committee approved study, 17 days after the injection of 2 × 10 human ovarian SKOV3 tumors cells into 14 female nude mice, treatment with vehicle or pazopanib (2.5 mg per mouse peroral every other day) was initiated. Longitudinal T2-weighted MR imaging, dynamic MR spectroscopy of hyperpolarized pyruvate, and F-FDG PET/computed tomographic (CT) imaging were performed before treatment, 2 days after treatment, and 2 weeks after treatment. Results Pazopanib inhibited ovarian tumor growth compared with control (0.054 g ± 0.041 vs 0.223 g ± 0.112, respectively; six mice were treated with pazopanib and seven were control mice; P< .05). Significantly higher pyruvate-to-lactate conversion (lactate/pyruvate + lactate ratio) was found 2 days after treatment with pazopanib than before treatment (0.46 ± 0.07 vs 0.31 ± 0.14, respectively; P < .05; six tumors after treatment, seven tumors before treatment). This was not observed with the control group or with F-FDG PET/CT imaging. Conclusion The findings suggest that hyperpolarizedC-pyruvate MR spectroscopy may serve as an early indicator of response to tyrosine kinase (angiogenesis) inhibitors such as pazopanib in ovarian cancer even when F-FDG PET/CT does not indicate a response. RSNA, 2017 Online supplemental material is available for this article.
Efficient induction of antigen-specific immunity is achieved by delivering multiple doses of vaccine formulated with appropriate adjuvants that can harness the benefits of innate immune mediators. The synthetic glycolipid α-galactosylceramide (α-GalCer) is a potent activator of NKT cells, a major innate immune mediator cell type effective in inducing maturation of DCs for efficient presentation of co-administered antigens. However, systemic administration of α-GalCer results in NKT cell anergy in which the cells are unresponsive to subsequent doses of α-GalCer. We show here that α-GalCer delivered as an adjuvant by the intranasal route, as opposed to the intravenous route, enables repeated activation of NKT cells and DCs, resulting in efficient induction of cellular immune responses to co-administered antigens. We show evidence that after intranasal delivery, α-GalCer is selectively presented by DCs for the activation of NKT cells, not B cells. Furthermore, higher levels of PD-1 expression, a potential marker for functional exhaustion of the NKT cells when α-GalCer is delivered by the intravenous route, are not observed after intranasal delivery. These results support a mucosal route of delivery for the utility of α-GalCer as an adjuvant for vaccines, which often requires repeated dosing to achieve durable protective immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.