Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology.
We have performed systematic measurements of the dynamics of laser-cooled 40 Ca + ions confined in a Penning trap and driven by a rotating dipole field ('rotating wall'). The trap used is a copy of the one used in the SPEC-TRAP experiment located at the HITRAP facility at GSI, Germany. The size and shape of the ion cloud has been monitored using a CCD camera to image the fluorescence light resulting from excitation by the cooling laser. We have varied the experimental conditions such as amplitude and frequency of the rotating wall drive as well as the trapping parameters. The rotating wall can be used for a radial compression of the ion cloud thus increasing the ion density in the trap. We have also observed plasma mode excitations in agreement with theoretical expectations. This work will allow us to define the optimum parameters for high compression of the ions as needed for precision spectroscopy of forbidden transitions.
We have performed laser cooling of Mg + ions confined in a Penning trap. The externally produced ions were captured in flight, stored and laser cooled. Laser-induced fluorescence was observed perpendicular to the cooling laser axis. Optical detection down to the single ion level together with electronic detection of the ion oscillations inside the Penning trap have been used to acquire information on the ion storage time, ion number and ion temperature. Evidence for formation of ion crystals has been observed. These investigations are an important prerequisite for sympathetic cooling of simultaneously stored highly-charged ions and precision laser spectroscopy of forbidden transitions in these.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.