Chemoprevention of cancer via herbal and dietary supplements is a logical approach to combat cancer and presently it is an attractive area of research investigations. Over the years, the use of isothiocyanates, such as sulforaphane (SFN) found in cruciferous vegetables, has been advocated as chemopreventive agents and their efficacy has been demonstrated in cell lines and animal models. In-vivo studies with SFN suggest that besides protecting normal healthy cells from environmental carcinogens it also exhibits cytotoxicity and apoptotic effects against various cancer cell types. Among several mechanisms for the chemopreventive activity of SFN against chemical carcinogenesis, its effect on drug metabolizing enzymes that causes activation/ neutralization of carcinogenic metabolites is well established. Recent studies suggest that SFN exerts its selective cytotoxicity to cancer cells via reactive oxygen species (ROS)-mediated generation of lipid peroxidation (LPO) products particularly 4-hydroxynonenal (HNE). Against the background of the known biochemical effects of SFN on normal and cancer cells, in this article we have reviewed the underlying molecular mechanisms responsible for the overall chemopreventive effects of SFN focusing on the role of HNE in these mechanisms that may also contribute to its selective cytotoxicity to cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.