A three-dimensional model that predicts the interface morphologies of silicon thin-film solar cells prepared on randomly textured substrates was developed and compared to experimental data. The surface morphologies of silicon solar cells were calculated by using atomic force microscope scans of the textured substrates and the film thickness as input data. Calculated surface morphologies of silicon solar cells are in good agreement with experimentally measured morphologies. A detailed description of the solar cell interface morphologies is necessary to understand light-trapping in silicon single junction and micromorph tandem thin-film solar cells and derive optimal light-trapping structures.
The influence of film formation on light-trapping properties of silicon thin-film solar cells prepared on randomly textured substrates was studied. Realistic interface morphologies were calculated with a three-dimensional (3D) surface coverage algorithm using the measured substrate morphology and nominal film thicknesses of the individual layers as input parameters. Calculated interface morphologies were used in finite-difference time-domain simulations to determine the quantum efficiency and absorption in the individual layers of the thin-film solar cells. The investigation shows that a realistic description of interface morphologies is required to accurately predict the light-trapping properties of randomly textured silicon thin-film solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.