A crucial part of the brain-computer interface is a classification of electroencephalography (EEG) motor tasks. Artifacts such as eye and muscle movements corrupt EEG signal and reduce the classification performance. Many studies try to extract not redundant and discriminative features from EEG signals. Therefore, this study proposed a signal preprocessing and feature extraction method for EEG classification. It consists of removing the artifacts by using discrete fourier transform (DFT) as an ideal filter for specific frequencies. It also cross-correlates the EEG channels with the effective channels to emphases the EEG motor signals. Then the resultant from cross correlation are statistical calculated to extract feature for classifying a left and right finger movements using support vector machine (SVM). The genetic algorithm was applied to find the discriminative frequencies of DFT for the two EEG classes signal. The performance of the proposed method was determined by finger movement classification of 13 subjects and the experiments show that the average accuracy is above 93 percent.
require filter methodology to draw the form of the synthesized filter on screen connected to a controller IP core is added to a processor system using embedded design techniques .The processor system is programmed to analyze the transfer function of the filters, infer its form with component on the screen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.