Vitamin deficiency affects up to 50% of the world's population, disproportionately impacting on developing countries where populations endure monotonous, cereal-rich diets. Transgenic plants offer an effective way to increase the vitamin content of staple crops, but thus far it has only been possible to enhance individual vitamins. We created elite inbred South African transgenic corn plants in which the levels of 3 vitamins were increased specifically in the endosperm through the simultaneous modification of 3 separate metabolic pathways. The transgenic kernels contained 169-fold the normal amount of -carotene, 6-fold the normal amount of ascorbate, and double the normal amount of folate. Levels of engineered vitamins remained stable at least through to the T3 homozygous generation. This achievement, which vastly exceeds any realized thus far by conventional breeding alone, opens the way for the development of nutritionally complete cereals to benefit the world's poorest people.folic acid ͉ metabolic engineering ͉ transgenic maize ͉ vitamin A fortification ͉ vitamin C
Combinatorial nuclear transformation is a novel method for the rapid production of multiplex-transgenic plants, which we have used to dissect and modify a complex metabolic pathway. To demonstrate the principle, we transferred 5 carotenogenic genes controlled by different endosperm-specific promoters into a white maize variety deficient for endosperm carotenoid synthesis. We recovered a diverse population of transgenic plants expressing different enzyme combinations and showing distinct metabolic phenotypes that allowed us to identify and complement rate-limiting steps in the pathway and to demonstrate competition between -carotene hydroxylase and bacterial -carotene ketolase for substrates in 4 sequential steps of the extended pathway. Importantly, this process allowed us to generate plants with extraordinary levels of -carotene and other carotenoids, including complex mixtures of hydroxycarotenoids and ketocarotenoids. Combinatorial transformation is a versatile approach that could be used to modify any metabolic pathway and pathways controlling other biochemical, physiological, or developmental processes.induced mutation ͉ metabolic engineering ͉ transgenic plant ͉ provitamin A
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.